Outline
PERAL Lab Meeting
會議內容
-
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
- Hypothesis Testing:驗證是否正確
-
Terminoly: 在統計中,我們想要檢測的母體
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
-
Central Limit Therom(CLT,中央極限定理)
- 整個統計的核心,最常被使用到
- 不論母體的分布,在進行多次的抽樣時,都會變成 Normal Distribution
- sample size 愈大時,表現愈明顯
-
Central Limit Throm Example
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
- 舉例: 骰子
- 結論: 當數值愈大,結果愈接近常態分布
Inferential Statistics(推論統計)
-
Empirial Rule
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
- ± 一個標準差:68%
± 兩個標準差:95%
± 三個標準差 :99.7%
-
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
-
Z-Distribution
- also standard Normal Distribution
- 把常態分布進行標準化的動作,可以對不同資料互相比較離散程度
- mean mu = 0
- standard deviation = 0
-
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
- Q1:
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
- Q2: 利用反查表
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
- 利用z-distribution 可以找到相對準確的數值
-
Hypothesis Testing
- Htpothesis Testing
- critical value
Hypothrdid testing(提出假說)
總結
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
建議&問題
-
P.8 "Expirial" -> "Empirical"? solomon
Ans: Empirial
-
P.9 How many students will have grades >= 50? Solomon
Ans: (100-68)/2 = 16% Jerry
-
P.11 計算有誤 (62.5-40)/10 solomon
Ans: 2.25
-
P.11 查表 Q2 = 1 - 0.9878 solomon
Ans: 0.0122(1.22% 左右)
-
p.14 左邊第一章圖 mu跟mu0 是否可以標出來solomon
Ans: 因為圖已經經過標準化處理,無法標出,可以直接看實際的例子。
補充: mu0是我們的假設值,這三張圖提供根據實際情況跟目的不同,採用不同的方法
-
咖啡罐是否都大於三磅,還是平均值大於等於三磅solomon
Ans:平均值
-
p.16 mu是平均值?Eager
Ans:不應該強調每一罐,而是平均值
-
p.16 目標:要證明>=三磅? [name=]
Ans:現在要證明低於三磅
-
p.18 Why 0.038 < 0.01 ? solomon
Ans:更正0.0038
-
p.19 why 得到z值後,可以直接確認結果? jennifer
Ans:同11
-
p.15 可以在解釋一次alpha asheley
Ans:這裡的alpha是一個設定的數值,是目前檢定資料裡面會包含多少%的資料在裡面,看p22,alpha = 1-CL
-
如果假設錯誤,會不會影響結果Lawrence
Ans:會
補充:可能假說正確,但數據偏差大
-
p.18 這兩個方法差異在哪?August
Ans: p使用機率 來確認h0會不會發生,c是利用實際的數值,超過代表h0是錯的
-
p.3 statisicse 更正August
-
中央極限定理至少需要多少樣本 Jerry
Ans: 30
-
p.3 敘述統計沒有推翻?Branko
Ans: 敘述統計沒有推論假說,推論統計包含但不限於假說檢定
-
p.14 假設有下面三種情況,紅白交界處是設定的a,若算出來落在紅色,則ha,白色則為h0秋分
Ans: 完全正確
-
要假設預期會被推翻的假說?phoebe
Ans: 可以這麼說
-
咖啡的範例phoebe
Ans: 站在消費者的角度來檢查商家,找到一個小於三磅的咖啡罐 h0就是錯的
想要驗證的放在ha
-
=3跟>=3 如何處理phoebe
Ans:剛剛的alpha是0.01包含整個深色範圍
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
-
p.19 critical value在統計學中的命名由來Toby
Ans:關鍵性的、臨界值
-
p.17 alpha是否為0.01 toby
Ans:是
-
之後的報告會圍繞統計嗎Eager
Ans:是
-
z-table 是裡面的數值 ,可否提供計算公式 Eager
Ans:In Excel, Z.TEST(array,x,[sigma])
-
p.17 why樣本標準差可以這樣計算 Eager
Ans:其中有省略一些,前提為母體已知且常態分佈才可以套用公式
帶補充
待追蹤事項
無
臨時動議
無
散會結束時間:12:14