1
延續 從
#include <stdint.h>
/* A union allowing us to convert between a double and two 32-bit integers.
* Little-endian representation
*/
typedef union {
double value;
struct {
uint32_t lsw;
uint32_t msw;
} parts;
} ieee_double_shape_type;
/* Set a double from two 32 bit ints. */
#define INSERT_WORDS(d, ix0, ix1) \
do { \
ieee_double_shape_type iw_u = { \
.parts.msw = ix0, \
.parts.lsw = ix1, \
}; \
(d) = iw_u.value; \
} while (0)
/* Get two 32 bit ints from a double. */
#define EXTRACT_WORDS(ix0, ix1, d) \
do { \
ieee_double_shape_type ew_u; \
ew_u.value = (d); \
(ix0) = ew_u.parts.msw; \
(ix1) = ew_u.parts.lsw; \
} while (0)
static const double one = 1.0, tiny = 1.0e-300;
double ieee754_sqrt(double x)
{
double z;
int32_t sign = 0x80000000;
uint32_t r, t1, s1, ix1, q1;
int32_t ix0, s0, q, m, t, i;
EXTRACT_WORDS(ix0, ix1, x);
/* take care of INF and NaN */
if ((ix0 & KK1) == KK2) {
/* sqrt(NaN) = NaN, sqrt(+INF) = +INF, sqrt(-INF) = sNaN */
return x * x + x;
}
/* take care of zero */
if (ix0 <= 0) {
if (((ix0 & (~sign)) | ix1) == 0)
return x; /* sqrt(+-0) = +-0 */
if (ix0 < 0)
return (x - x) / (x - x); /* sqrt(-ve) = sNaN */
}
/* normalize x */
m = (ix0 >> 20);
if (m == 0) { /* subnormal x */
while (ix0 == 0) {
m -= 21;
ix0 |= (ix1 >> 11);
ix1 <<= 21;
}
for (i = 0; (ix0 & 0x00100000) == 0; i++)
ix0 <<= 1;
m -= i - 1;
ix0 |= (ix1 >> (32 - i));
ix1 <<= i;
}
m -= KK3; /* unbias exponent */
ix0 = (ix0 & 0x000fffff) | 0x00100000;
if (m & 1) { /* odd m, double x to make it even */
ix0 += ix0 + ((ix1 & sign) >> 31);
ix1 += ix1;
}
m >>= 1; /* m = [m/2] */
/* generate sqrt(x) bit by bit */
ix0 += ix0 + ((ix1 & sign) >> 31);
ix1 += ix1;
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
r = 0x00200000; /* r = moving bit from right to left */
while (r != 0) {
t = s0 + r;
if (t <= ix0) {
s0 = t + r;
ix0 -= t;
q += r;
}
ix0 += ix0 + ((ix1 & sign) >> 31);
ix1 += ix1;
r >>= 1;
}
r = sign;
while (r != 0) {
t1 = s1 + r;
t = s0;
if ((t < ix0) || ((t == ix0) && (t1 <= ix1))) {
s1 = t1 + r;
if (((t1 & sign) == sign) && (s1 & sign) == 0)
s0 += 1;
ix0 -= t;
if (ix1 < t1)
ix0 -= 1;
ix1 -= t1;
q1 += r;
}
ix0 += ix0 + ((ix1 & sign) >> 31);
ix1 += ix1;
r >>= 1;
}
/* use floating add to find out rounding direction */
if ((ix0 | ix1) != 0) {
z = one - tiny; /* trigger inexact flag */
if (z >= one) {
z = one + tiny;
if (q1 == (uint32_t) 0xffffffff) {
q1 = 0;
q += 1;
} else if (z > one) {
if (q1 == (uint32_t) KK4)
q += 1;
q1 += 2;
} else
q1 += (q1 & 1);
}
}
ix0 = (q >> 1) + 0x3fe00000;
ix1 = q1 >> 1;
if ((q & 1) == 1)
ix1 |= sign;
ix0 += (m << KK5);
INSERT_WORDS(z, ix0, ix1);
return z;
}
作答區
KK1 = ?
(a)
0x1ff00000(b)
0x2ff00000(c)
0x3ff00000(d)
0x4ff00000(e)
0x5ff00000(f)
0x6ff00000(g)
0x7ff00000(h)
0x8ff00000(i)
0x9ff00000(j)
0xaff00000KK2 = ?
(a)
0x1ff00000(b)
0x2ff00000(c)
0x3ff00000(d)
0x4ff00000(e)
0x5ff00000(f)
0x6ff00000(g)
0x7ff00000(h)
0x8ff00000(i)
0x9ff00000(j)
0xaff00000KK3 = ?
(a)
31(b)
63(c)
127(d)
255(e)
511(f)
1023(g)
2047KK4 = ?
(a)
0xffffffff(b)
0xfffffffe(c)
0xfffffffd(d)
0xfffffffc(e)
0xfffffffb(f)
0xfffffffa(g)
0xfffffff9(h)
0xfffffff8KK5 = ?
(a)
40(b)
30(c)
20(d)
10(e)
0(f)
-10(g)
-20Reference:
延伸題目: 解釋上述程式碼何以運作,並且改為 float (單精度) 版本,注意應該用更短的程式碼來實作
2
考慮到下方函式 shift_right_arith
和 shift_right_logical
分別表示算術右移和邏輯右移,請嘗試補完程式碼。可由 sizeof(int) * 8
得知整數型態 int
的位元數 w
,而位移量 k
的有效範圍在 0 到 w - 1
。
#include <stdio.h>
int shift_right_arith(int x, int k) {
int xsrl = (unsigned) x >> k;
int w = sizeof(int) << P1;
int mask = (int) -1 << (P2);
if (x < 0)
return xsrl P3 mask;
return xsrl;
}
unsigned shift_right_logical(unsigned x, int k) {
unsigned xsra = (int) x >> k;
int w = sizeof(int) << P4;
int mask = (int) -1 << (P5);
return xsra P6 P7;
}
作答區
P1 = ?
(a)
1(b)
2(c)
3(d)
-1(e)
-2(f)
-3(g)
0P2 = ?
(a)
1(b)
k(c)
k - w(d)
w + k(e)
w(f)
w - kP3 = ? (為某種 operation)
(a)
^(b)
&(c)
<<(d)
|(e)
>>(f)
+(g)
-P4 = ?
(a)
1(b)
2(c)
3(d)
-1(e)
-2(f)
-3(g)
0P5 = ?
(a)
1(b)
k(c)
k - w(d)
w + k(e)
w(f)
w - kP6 = ? (為某種 operation)
(a)
^(b)
&(c)
<<(d)
|(e)
>>(f)
+(g)
-P7 = ?
(a)
mask(b)
~maskReference:
延伸題目: 在 x86_64 和 Aarch32/Aarch64 找到對應的指令,並說明其作用和限制