Joy Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    --- tags: 2021 暑培模競 title: 2021 師大附中暑期資訊培訓 模擬競賽 II 題解 --- # 模擬競賽 II 題解 ## 2021 師大附中暑期資訊培訓 emanlaicepsa / joylintp / WiwiHo --- <!-- .slide: data-background="https://imgur.com/VJmHRd2.jpg" --> <font color="black"> <font size=7><b> 機器鴨 (Duck) </b></font> <font size=6><b> 來源: 原創 </b></font> <font size=6><b> 測資: WiwiHo </b></font> <font size=6><b> 題敘: joylintp </b></font> </font> ---- ## 題目大意 有兩個序列 $a$、$b$ 從起點開始,你要走 $n$ 步 第 $i$ 步會直線移動 $(a_i,b_i)$ 的距離 把它們重新排列,滿足你走的路線不自交 ---- 如果 $a_i$ 總和或 $b_i$ 總和不是 0 就無解 ---- ## Subtask 1 $n=3$ 如果你隨便弄出 3 個向量 如果這 3 個向量拼不出三角形 唯一的可能就是它們互相平行 否則,這 3 個向量可以以任意順序排列 枚舉所有 $a$ 的排列 檢查每個向量 $(a_i,b_i)$ 是否平行 ---- ## Subtask 2 $n \leq 6$ 枚舉 $a$ 的排列和 $b$ 的排列的搭配 然後檢查能不能當答案 $O(n! \times n! \times n^2)$ ---- ## Subtask 3 $\forall 1 \leq i < n,\ b_i=1$ 如果把 $a$ 由小到大排序 那麼前 $n-1$ 步會走出一個下凸包的形狀 最後一步會直接走回原點 所以這樣走出來的一定是一個凸多邊形 $O(n \log n)$ ---- ## Subtask 4 在 Subtask 1 中 我們用「是不是全部平行」來判斷能不能當解 事實上,只要有 $n$ 個向量 至少有一對不平行 那就可以用它們做出一個合法路線 ---- 在 Subtask 3 中我們做出了一個凸多邊形 只要把這 $n$ 個向量極角排序就可以得到凸多邊形了 ---- 剩下的問題就是怎麼找這 $n$ 個向量 配出 $n$ 個全部平行的向量的方法數 遠低於總方案數 random 會是好的 ---- 可不可以不要 random? 官解作法: 把 $a$ 按絕對值由小到大排序 $b$ 按絕對值由大到小排序 ---- 對於 $|a_i| < |a_j|$ 肯定有 $\frac{|a_i|}{|b_i|} \neq \frac{|a_j|}{|b_j|}$ 因為 $|b_i| \geq |b_j|$ 得出 $\left\lvert\frac{a_i}{b_i}\right\rvert \neq \left\lvert\frac{a_j}{b_j}\right\rvert$ 至於 $|a_i| = |a_j|$ 因為 $a_i$ 皆相異,這最多只有兩個而已 而 $n \geq 3$ 所以肯定有解 $O(n \log n)$ ---- 一些會錯的解: - 照輸入順序原封不動輸出 - 純 random 輸出 - 把 $a$、$b$ 由小排到大湊向量 - 把 $a$ 由小排到大、$b$ 由大排到小湊向量 ---- 為什麼 $n$ 那麼小? 因為我不會寫 checker ---- ```cpp= #include <bits/stdc++.h> #define StarBurstStream ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); #define iter(a) a.begin(), a.end() #define mp(a, b) make_pair(a, b) #define F first #define S second using namespace std; typedef long long ll; using pll = pair<ll, ll>; int main(){ StarBurstStream int n; cin >> n; vector<ll> a(n), b(n); ll asum = 0, bsum = 0; for(int i = 0; i < n; i++) cin >> a[i], asum += a[i]; for(int i = 0; i < n; i++) cin >> b[i], bsum += b[i]; if(asum != 0 || bsum != 0){ cout << "No\n"; return 0; } sort(iter(a), [](ll a, ll b){ return abs(a) < abs(b); }); sort(iter(b), [](ll a, ll b){ return abs(a) > abs(b); }); vector<pll> v(n); for(int i = 0; i < n; i++) v[i] = mp(a[i], b[i]); auto comp = [](pll a, pll b){ return atan2(a.S, a.F) < atan2(b.S, b.F); }; sort(iter(v), comp); cout << "Yes\n"; for(int i = 0; i < n; i++){ cout << v[i].F << " " << v[i].S << "\n"; } return 0; } ``` --- <!-- .slide: data-background="https://imgur.com/uZwUVue.jpg" --> <font color="black"> <font size=7><b> 惡地之路 (Highway) </b></font> <font size=6><b> 來源: [109 學年度資訊學科能力競賽臺南一中校內複選 pC](https://toj.tfcis.org/oj/pro/568/) </b></font> <font size=6><b> 測資: emanlaicepsa </b></font> <font size=6><b> 題敘: joylintp </b></font> </font> ---- ## 題目大意 給一張圖 令 $s$ 到節點 $i$ 走 $k$ 步的最短距離是 $d(i,k)$ 對於每個 $i$ 求 $\min \{ d(i,k) \times k \}$ ---- ## Subtask 1,2,3,4 暴力走所有可能路徑 - Subtask 1:最多 $O(n!)$ 條路徑 - Subtask 2:圖是鏈狀,只有 $O(n)$ 條路徑 - Subtask 3:圖是樹,只有 $O(n)$ 條路徑 - Subtask 4:圖是環,只有 $O(n)$ 條路徑 ---- ## Subtask 5,6 把每個節點都複製 $n$ 份 如果本來有一條邊是 $(u,v)$ 那就對所有 $1 \leq i < n$ 蓋一條邊是 $u$ 的第 $i$ 個點到 $v$ 的第 $i+1$ 個點(有向) 還有 $v$ 的第 $i$ 到 $u$ 的第 $i+1$ 這樣走到某個節點的第 $i$ 個點的路徑長度一定是 $i-1$ $n^2$ 個點、$2nm$ 個邊做最短路徑 $O((n^2+m) \log n)$ ---- ## Subtask 7 $dp[i][j]=$ 走 $i$ 步到 $j$ 的最短路 \\[dp[i][j]=\min_{(k,j) \in E} \{ dp[i-1][k] + dis(k,j) \}\\] $O(n(n+m))$ DP ---- ```cpp= #include <bits/stdc++.h> #define StarBurstStream ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); #define eb(a) emplace_back(a) #define mp(a, b) make_pair(a, b) #define F first #define S second using namespace std; typedef long long ll; using pll = pair<ll, ll>; int main(){ StarBurstStream int n, m, s; cin >> n >> m >> s; vector<vector<pll>> g(n + 1); for(int i = 0; i < m; i++){ int u, v, p; cin >> u >> v >> p; g[u].eb(mp(v, p)); g[v].eb(mp(u, p)); } vector<ll> dp(n + 1, 1LL << 60); dp[s] = 0; vector<ll> ans(n + 1, 1LL << 60); ans[s] = 0; for(int i = 1; i <= n; i++){ vector<ll> dp2(n + 1, 1LL << 60); for(int j = 1; j <= n; j++){ for(auto e : g[j]){ dp2[e.F] = min(dp2[e.F], dp[j] + e.S); } } dp = dp2; for(int j = 1; j <= n; j++){ if(dp[j] < (1LL << 60)) ans[j] = min(ans[j], dp[j] * i); } } for(int i = 1; i <= n; i++) cout << ans[i] << " "; cout << "\n"; return 0; } ``` --- <!-- .slide: data-background="https://imgur.com/NdWJqQT.jpg" --> <font color="black"> <font size=7><b> 調色盤 (Palette) </b></font> <font size=6><b> 來源: [2020 全國模擬賽公開組 pD](https://codeforces.com/gym/102891/problem/D) </b></font> <font size=6><b> 測資: WiwiHo </b></font> <font size=6><b> 題敘: joylintp </b></font> </font> ---- ## 題目大意 給你一個序列 $c$ 有 $q$ 筆詢問,每筆詢問給 $l, r$ 求有幾個在 $[l,r]$ 裡的區間 $[L,R]$ 滿足 $[L,R]$ 裡的數字全距不超過 $k$ ---- ## Subtask 1 $k=10^6$ 所有區間的全距都不會超過 $k$ 詢問是 $l,r$ 令 $len=r-l+1$ 答案是 $\frac{len(len+1)}{2}$ ---- ## Subtask 2 $n,q \leq 50$ 對每個詢問 枚舉 $O(n^2)$ 個區間 暴力掃一遍計算全距 $O(n^3q)$ ---- ## Subtask 3 $n,q \leq 500$ 對每個詢問 枚舉區間的左端點 然後枚舉右端點的時候可以一邊算區間內的最大最小值 $O(n^2q)$ ---- ## Subtask 4 $n,q \leq 10^4$ 先找到以每個位置為右界時 區間的左界最遠可以到哪 對每個詢問,枚舉右界 可以知道能取的左界有幾個 $O(nq)$ ---- ## Subtask 5,6 把詢問照右界排序 從左邊掃到右邊 計錄「每個位置當左界時,有幾個目前已經掃過的位置可以當右界」 令這個數字是 $r(i)$ ---- 如果目前掃到的這個位置是 $i$ 它當右界時,最遠的左界在 $l(i)$ 那麼就把 $r(l(i)..i)$ 都加上 1 處理右界在目前位置的詢問 直接詢問 $r(l..r)$ 的和即可 ---- $r(i)$ 維護可以用 BIT $l(i)$ 計算可以用單調隊列 或是二分搜配 Sparse Table 求最大最小值 複雜度是 $O((n+q) \log n)$ 如果你在二分搜的時候是配線段樹 複雜度會是 $O(n \log^2 n + q \log n)$ 可能 TLE,只能過 Subtask 5 ---- ```cpp= #include <bits/stdc++.h> #define StarBurstStream ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); #define eb(a) emplace_back(a) #define pob pop_back() #define pof pop_front() #define mp(a, b) make_pair(a, b) #define F first #define S second using namespace std; typedef long long ll; using pii = pair<int, int>; int lowbit(int x){ return x & -x; } struct BIT{ vector<ll> bit; void modify(int x, ll v){ for(; x < bit.size(); x += lowbit(x)){ bit[x] += v; } } ll query(int x){ ll ans = 0; for(; x > 0; x -= lowbit(x)){ ans += bit[x]; } return ans; } }; struct SUMBIT{ BIT bit1, bit2; void modify(int l, int r, ll v){ if(l > r) return; bit1.modify(l, v); bit1.modify(r + 1, -v); bit2.modify(l, l * v); bit2.modify(r + 1, (r + 1) * (-v)); } ll query(int x){ return (x + 1) * bit1.query(x) - bit2.query(x); } ll query(int l, int r){ return query(r) - query(l - 1); } }; int main(){ StarBurstStream int n, k; cin >> n >> k; SUMBIT bit; bit.bit1.bit.resize(n + 1); bit.bit2.bit.resize(n + 1); vector<int> h(n + 1); for(int i = 1; i <= n; i++) cin >> h[i]; vector<vector<pii>> qry(n + 1); int q; cin >> q; for(int i = 0; i < q; i++){ int l, r; cin >> l >> r; qry[r].eb(mp(l, i)); } deque<int> mx, mn; vector<ll> ans(q); int lp = 1; for(int i = 1; i <= n; i++){ while(!mx.empty() && h[mx.back()] <= h[i]) mx.pob; while(!mn.empty() && h[mn.back()] >= h[i]) mn.pob; mx.eb(i); mn.eb(i); while(h[mx.front()] - h[mn.front()] > k){ lp++; while(mx.front() < lp) mx.pof; while(mn.front() < lp) mn.pof; } bit.modify(lp, i, 1); for(auto p : qry[i]){ int id = p.S, l = p.F; ans[id] = bit.query(l, i); } } for(ll i : ans) cout << i << "\n"; return 0; } ``` --- <!-- .slide: data-background="https://imgur.com/bRPOfq5.jpg" --> <font color="black"> <font size=7><b> 告示牌 (Sign) </b></font> <font size=6><b> 來源: [CF 803D](https://codeforces.com/problemset/problem/803/D) </b></font> <font size=6><b> 測資: joylintp </b></font> <font size=6><b> 題敘: joylintp </b></font> </font> ---- ### 告示牌 #### 只有在空格出現時才能換行 ---- ### 告示牌 - Subtask 1 $s$ 沒有空格 → 不能換行 → 答案為 $|s|$ <font color="yellow">2 / 100</font> ---- ### 告示牌 - Subtask 2 $|s| \le 20$ → 枚舉換行的位置 → 複雜度 $O(2^{|s|} \times |s|)$ <font color="yellow">9 / 100</font> ---- ### 告示牌 - Subtask 3 $|s| \le 1000$ → 枚舉告示牌寬度 → 找到最小的 $w$ 能塞得下 → 複雜度 $O(|s|^2)$ <font color="yellow">(9 + 16) / 100</font> ---- ### 告示牌 - Subtask 4 $|s| \le 2 \times 10^5$ ~~→ 枚舉告示牌寬度~~ → 對告示牌寬度二分搜 → 找到最小的 $w$ 能塞得下 → 複雜度 $O(|s|\log{|s|})$ <font color="lightgreen">100 / 100</font> ---- ```cpp= #include<bits/stdc++.h> using namespace std; int k; vector<int> v; bool chk(int w) { int now = 0, cnt = 1; for (int i : v) if (now + i > w) now = i, cnt++; else now += i; return (cnt <= k); } signed main() { ios_base::sync_with_stdio(false); cin.tie(0); cin >> k, cin.ignore(100, '\n'); string s; getline(cin, s); int mx = 0, sum = s.size(); v.clear(); for (int i = 0; i < s.size(); i++) { int tl = 0; while (i < s.size() && s[i] != ' ') tl++, i++; if (i < s.size()) tl++; v.push_back(tl), mx = max(mx, tl); } int l = mx - 1, r = sum; while (l + 1 != r) { int m = (l + r) / 2; if (chk(m)) r = m; else l = m; } cout << r << '\n'; return 0; } ``` --- <!-- .slide: data-background="https://imgur.com/D10N7XN.jpg" --> <font color="black"> <font size=7><b> 變色蠑螈 (UPRP) </b></font> <font size=6><b> 來源: [CF 939D](https://codeforces.com/problemset/problem/939/D) </b></font> <font size=6><b> 測資: joylintp </b></font> <font size=6><b> 題敘: joylintp </b></font> </font> ---- ### 變色蠑螈 - Subtask 1 $c_1 = c_2 = \ldots = c_n$ → 需要的魔法只會有 $c_1$ 到 $d_i$ → 答案是 $d_i$ 的相異數字數量 (? ---- ### 變色蠑螈 - Subtask 1 $c_1 = c_2 = \ldots = c_n$ → 需要的魔法只會有 $c_1$ 到 $d_i$ → 答案是 $d_i$ 的相異數字數量 → 如果存在 $c_1 = d_i$ 記得要減一 `set` 維護,總複雜度 $O(n\log{n})$ <font color="yellow">6 / 100</font> ---- ### 變色蠑螈 - Subtask 2 $a_i,b_i \le 2$ → 只會需要 $1$ 變成 $2$ 的魔法 → 如果存在 $c_i \ne d_i$ 答案為 $1$;否則為 $0$ 複雜度 $O(n)$ <font color="yellow">4 / 100</font> ---- ### 變色蠑螈 蠑螈顏色 → 點 魔法 → 邊 → 判斷需要多少邊才能讓每組 $c_i,d_i$ 連通 ---- ### 變色蠑螈 - Subtask 3 $a_i,b_i \le 4$ → 魔法數量只有 $C^4_2 = 6$ 種 → 枚舉需要哪些魔法 <font color="yellow">9 / 100</font> ---- ### 變色蠑螈 - Subtask 4 $n,c_i \le 1000$ → 每次 DFS 判斷目前的 $c_i,d_i$ 是否已連通 → 不連通就加邊 總複雜度 $O(n^2)$ <font color="yellow">17 / 100</font> ---- ### 變色蠑螈 - Subtask 5 $c_i \le 2 \times 10^5$ ~~→ 每次 DFS 判斷目前的 $c_i,d_i$ 是否已連通~~ → 並查集判斷目前的 $c_i,d_i$ 是否已連通 → 不連通就加邊 總複雜度 $O(n \times \alpha(n))$ <font color="yellow">(17+31) / 100</font> ---- ### 變色蠑螈 - Subtask 6 顏色最多 $2n$ 種 → 先將顏色編號離散化 → 剩下跟 Subtask 5 一樣 總複雜度 $O(n \log{n} + n \times \alpha(n))$ <font color="lightgreen">100 / 100</font> ---- ```cpp= #include<bits/stdc++.h> using namespace std; #define MP make_pair #define F first #define S second vector<int> rt; int fnd(int a) { if (a == rt[a]) return a; else return rt[a] = fnd(rt[a]); } void uni(int a, int b) { int x = fnd(a), y = fnd(b); rt[x] = y; } signed main() { ios_base::sync_with_stdio(false); cin.tie(0); int n; cin >> n; vector<int> c(n), d(n), v; for (int &i : c) cin >> i, v.push_back(i); for (int &i : d) cin >> i, v.push_back(i); sort(v.begin(), v.end()), v.resize(unique(v.begin(), v.end()) - v.begin()); rt.resize(v.size()); for (int i = 0; i < rt.size(); i++) rt[i] = i; vector<int> nc(n), nd(n); for (int i = 0; i < n; i++) nc[i] = lower_bound(v.begin(), v.end(), c[i]) - v.begin(); for (int i = 0; i < n; i++) nd[i] = lower_bound(v.begin(), v.end(), d[i]) - v.begin(); vector<pair<int, int>> ans; for (int i = 0; i < n; i++) if (fnd(nc[i]) != fnd(nd[i])) ans.push_back(MP(v[nc[i]], v[nd[i]])), uni(nc[i], nd[i]); cout << ans.size() << '\n'; for (auto p : ans) cout << p.F << ' ' << p.S << '\n'; return 0; } ```

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully