# Plot Tredn Line
```python=
import matplotlib.pyplot as plt
import scipy.stats as stats
import datetime
query = '''SELECT
round((sum(container_cpu_usage_sum)/sum(container_cpu_requests_sum)*100)::numeric, 2) AS usage_pct,
date_trunc('day', created_at) AS date
FROM resource_usage
GROUP BY date_trunc('day', created_at)
ORDER BY date_trunc('day', created_at);
'''
df = pd.read_sql(query, connection)
df.set_index('date', inplace=True)
fig, ax = plt.subplots(1, 1)
ax.plot(df.index, df)
ax.set_xlim([datetime.date(2022, 7, 5), datetime.date(2023, 4, 12)])
# linear regression needs dates to be numeric
df.index = df.index.map(datetime.date.toordinal)
# linear regression
slope, y0, r, p, stderr = stats.linregress(df.index,
df['usage_pct'])
# print(slope, y0, r, p, stderr)
# x co-ordinates for the start and end of the line
x_endpoints = pd.DataFrame([df.index[0], df.index[-1]])
# Compute predicted values from linear regression
y_endpoints = y0 + slope * x_endpoints
print('X Points')
print(x_endpoints)
print('Y Points')
print(y_endpoints)
print('DF Index')
print(df.index)
# Overlay the line
ax.plot(x_endpoints, y_endpoints, c='r')
ax.set_xlabel('history_datetime')
```
Prints
```text
X Points
0
0 738341
1 738628
Y Points
0
0 8.627195
1 10.011531
DF Index
Index([738341, 738348, 738354, 738361, 738369, 738375, 738397, 738404, 738480,
738487, 738494, 738501, 738508, 738516, 738523, 738536, 738543, 738558,
738564, 738572, 738579, 738628],
dtype='int64', name='date')
```
And Plots:
Text(0.5, 0, 'history_datetime')

If I comment out the first plot I can see the trend line. It has a different index.
```python=
#ax.plot(df.index, df)
#ax.set_xlim([datetime.date(2022, 7, 5), datetime.date(2023, 4, 12)])
```
