# CryptoCTF
## Authors
We're thinking of creating a CryptoHack blog post for the writeup of this CTF. If you would like to be credited as an author, please include your name below. Each solved challenge will also include the name(s) of those who first solved it.
- name(s)
- Robin_Jadoul
- rkm0959
- TheBlueFlame121
## Current Progress
| Challenge Name | Category | Solved By | Points |
| --------------- | -------- | --------- | -----: |
| [Trailing Bits](#Trailing-Bits) | Bitshifting | willwam845 | 30
| [Amsterdam](#Amsterdam) | ??? | rkm0959 | 55
| [Gambler](#Gambler) | PRNG | Cryptanalyse, willwam845 | 86
| [Three Ravens](#Three-Ravens) | RSA | TheBlueFlame121 | 90
| [Model](#Model) | RSA | TheBlueFlame121, rkm0959, joachim | 112
| [One Line Crypto](#One-Line-Crypto) | Primes | UnblvR | 146 |
| [Abbot](#Abbot) | ??? | rkm0959 | 194 |
| [Butterfly Effect](#Butterfly-Effect) | PRNG | rkm0959, Robin_Jadoul | 209
| [Mad Hat](#Mad-Hat) | ??? | rkm0959 | 217
| [Classic](#Classic) | Classical | Tux, hyperreality | 226
| [Heaven](#Heaven) | LFSR | Q7, Robin_Jadoul | 226
| [Strip](#Strip) | ??? | pcback, rkm0959 | 285 |
| [Complex to Hell](#Complex-to-Hell) | Hill Cipher | pcback, joseph, UnblvR | 300
| [Fatima](#Fatima) | Reversing | pcback | 316
| [Namura](#Namura) | Knapsack | Q7 | 375
| [Decent RSA](#Decent-RSA) | RSA | ??? | 423 |
| [Gengol](#Gengol) | ??? | pcback | 450 |
## Trailing Bits
### Challenge
```
The text that includes the flag is transmitted while
unfortunately both of its head and tail bits are lost :(
```
#### Solved by: Willwam
##### Points: 30
### Solution
From the challenge description, we can guess that the binary data provided has a couple bits removed from either end. Not to worry however, since the removed bits won't affect the rest of the data at all.
We know that some bits have been removed, so we can just replace those with some decoy bits, and then try decoding from binary until we get readable text.
```py
from Crypto.Util.number import *
flag = open('output.txt', 'r').read().strip()
i = 0
while True:
data = long_to_bytes(int(flag,2)*2**i)
if b'CCTF' in data:
print(data)
exit()
i += 1
```
Output:
> basic unit of information in computing and digital communications. The name is a portmanteau of binary digit.[1] The bit represents a logical state with one of two possible values. These values are most commonly represented as either 0or1, but other representations such as true/false, yes/no, +/−, or on/off are common.
The flag is CCTF{it5_3n0u9h_jU5T_tO_sH1ft_M3}
The correspondence between these values and the physical states of the underlying storage or device is a matter of convention, and different assignments may be used even within the same device or program. It may be physically implemented with a two-st
### Flag
`CCTF{it5_3n0u9h_jU5T_tO_sH1ft_M3}`
---
## Amsterdam
### Challenge
#### Solved by: rkm0959
##### Points: 55
> Is it normal to have such encoding?
```python=
from Crypto.Util.number import *
from functools import reduce
import operator
from secret import flag, n, k
def comb(n, k):
if k > n :
return 0
k = min(k, n - k)
u = reduce(operator.mul, range(n, n - k, -1), 1)
d = reduce(operator.mul, range(1, k + 1), 1)
return u // d
def encrypt(msg, n, k):
msg = bytes_to_long(msg.encode('utf-8'))
if msg >= comb(n, k):
return -1
m = ['1'] + ['0' for i in range(n - 1)]
for i in range(1, n + 1):
if msg >= comb(n - i, k):
m[i-1]= '1'
msg -= comb(n - i, k)
k -= 1
m = int(''.join(m), 2)
i, z = 0, [0 for i in range(n - 1)]
c = 0
while (m > 0):
if m % 4 == 1:
c += 3 ** i
m -= 1
elif m % 4 == 3:
c += 2 * 3 ** i
m += 1
m //= 2
i += 1
return c
enc = encrypt(flag, n, k)
print('enc =', enc)
enc = 5550332817876280162274999855997378479609235817133438293571677699650886802393479724923012712512679874728166741238894341948016359931375508700911359897203801700186950730629587624939700035031277025534500760060328480444149259318830785583493
```
### Solution
We see that there are two steps into solving this problem. First, we have to retrieve the value of $m$ from the encryption result. Then, we calculate the plaintext from $m$.
The first part can be done with recursion. By dividing cases on $c \pmod 3$, we can find which 'if' statement we entered on the first 'while' iteration. This also gives our value of $m \pmod{4}$. We continue this until we have our original value of $c$.
```python=
def recv(res):
if res == 1:
return 1
if res % 3 == 0:
return 2 * recv(res//3)
if res % 3 == 1:
return 1 + 2 * recv(res//3)
if res % 3 == 2:
return -1 + 2 * recv(res//3)
## computation result
m = 13037931070082386429043329808978789360911287214189289770230708339088698578551447560972351036453899271623903109387482345515668380476074788749548946464
```
Now we calculate the plaintext. Notice that $m$ was initially a bit string, which was then converted to an integer. Therefore, we start by changing $m$ into a bit string.
```python=
s = []
while m > 0:
s.append(m%2)
m //= 2
s = s[::-1]
n = len(s)
```
It can be proved with induction that after a successful (one that does not return $-1$) call of encrypt(), the value of 'msg' must be $0$. The key idea is Pascal's Triangle.
If we know the value of $k$ at the end of encrypt(), we can reverse engineer the plaintext since we know the result $m$. Brute force all possibilities for $k$, and we are done.
### Implementation
```python=
def comb(n, k):
if k > n :
return 0
k = min(k, n - k)
u = reduce(operator.mul, range(n, n - k, -1), 1)
d = reduce(operator.mul, range(1, k + 1), 1)
return u // d
def recv(res):
if res == 1:
return 1
if res % 3 == 0:
return 2 * recv(res//3)
if res % 3 == 1:
return 1 + 2 * recv(res//3)
if res % 3 == 2:
return -1 + 2 * recv(res//3)
## m = recv(enc)
m = 13037931070082386429043329808978789360911287214189289770230708339088698578551447560972351036453899271623903109387482345515668380476074788749548946464
s = []
while m > 0:
s.append(m%2)
m //= 2
s = s[::-1]
n = len(s)
ans = 0
for k in range(0, 400):
ans = 0
for i in range(0, n-1):
if s[n-1-i] == 1:
ans += comb(i, k)
k = k + 1
print(long_to_bytes(ans))
```
#### Flag
``` CCTF{With_Re3p3ct_for_Sch4lkwijk_dec3nt_Encoding!} ```
## Three Ravens
### Challenge
#### Solved by: TheBlueFlame
##### Points: 90
> There were three ravens sat on a tree, Downe a downe, hay downe, a downe, They were as black as they might be.
```py
#!/usr/bin/python
from Crypto.Util.number import *
from flag import flag
def keygen(nbit):
while True:
p, q, r = [getPrime(nbit) for _ in range(3)]
if isPrime(p + q + r):
pubkey = (p * q * r, p + q + r)
privkey = (p, q, r)
return pubkey, privkey
def encrypt(msg, pubkey):
enc = pow(bytes_to_long(msg.encode('utf-8')), 0x10001, pubkey[0] * pubkey[1])
return enc
nbit = 512
pubkey, _ = keygen(nbit)
print('pubkey =', pubkey)
enc = encrypt(flag, pubkey)
print('enc =', enc)
```
### Solution
The challenge encrypts the flag with a modulus
$$
N = (p*q*r)*(p+q+r)
$$
and gives the output $n = pqr$, $k = p+q+r$. To totally break the cryptosystem, we would want to find the totient of the modulus
$$
\phi(N) = (p-1)(q-1)(r-1)(p+q+r - 1)
$$
but we can simplify this when the encrypted message $m$ is small enough. If we have $m < k$, we can instead find $\phi(k) = k-1$, and find $e^{-1} \mod \phi(k)$, and solve!
Observe that for any $n, l$, as long as $l | n$, any equivalence $a \equiv b \pmod n$ also holds mod $l$: $a \equiv b \pmod l$ (but note that the other way around does not necessarily hold).
To fully see this, we can write \begin{align*}a &\equiv b \pmod n \\ \Leftrightarrow \\ a &= b + kn\\&=b + ktl\quad(\text{since }l|n\text{, so } n = tl)\\\Rightarrow\\a &\equiv b \pmod l\end{align*}
So, since $k|n$, we can solve $m \equiv m^{1+\phi(k)} \pmod k$ as if it was a single-prime RSA problem. And because $m < k$, the residue $[m]_k$ (the rest when dividing $m$ by $k$) is exactly equal to $m$.
### Implementation
```py
from Crypto.Util.number import *
k = 31678428119854378475039974072165136708037257624045332601158556362844808093636775192373992510841508137996049429030654845564354209680913299308777477807442821
c = 8218052282226011897229703907763521214054254785275511886476861328067117492183790700782505297513098158712472588720489709882417825444704582655690684754154241671286925464578318013917918101067812646322286246947457171618728341255012035871158497984838460855373774074443992317662217415756100649174050915168424995132578902663081333332801110559150194633626102240977726402690504746072115659275869737559251377608054255462124427296423897051386235407536790844019875359350402011464166599355173568372087784974017638074052120442860329810932290582796092736141970287892079554841717950791910180281001178448060567492540466675577782909214
e = 0x10001
phi = k-1
d = pow(e,-1,phi)
flag = pow(c,d,k)
print(long_to_bytes(flag))
```
### Flag
`CCTF{tH3_thr3E_r4V3n5_ThRe3_cR0w5}`
---
## Butterfly Effect
### Challenge
#### Solved by: rkm0959, Robin_Jadoul
##### Points: 209
> Have you heard of the butterfly effect in chaos theory?
We have a very clear sample!
```py
def hq_prng(x, p, g):
rng = 0
for _ in range(getRandomNBitInteger(14)):
x = pow(g, x, p)
for i in range(nbit):
x = pow(g, x, p)
if x < (p-1) // 2:
rng += 2**i - 1
elif x > (p-1) // 2:
rng -= 2**i + 1
else:
rng ^= 2**(i + 1)
if rng <= 0:
return -rng
return rng
def keygen(p, g):
r, s = hq_prng(getRandomNBitInteger(nbit), p, g), hq_prng(getRandomNBitInteger(nbit), p, g)
u, v = gmpy2.next_prime(r**2 + s**2), gmpy2.next_prime(2*r*s)
e, n = 0x10001, u * v
return e, n
def encrypt(msg, e, n):
return pow(bytes_to_long(msg.encode('utf-8')), e, n)
| encrypt(flag, e, n) = 117667582947026307482709850318214820165964980495414423711608614681075036546959172088083682928734150238100258554942348560628319669155021151214088627854571799267413754120136204715904365400299634909310436631535142237485014585244686834739846288478469145431250711508705770591654103989678439960043788163169606969942
| (p, g, n) = (68396932999729141946282927360590169590631231980913314894620521363257317833167L, 11148408907716636563689390048104567047599159688378384611325239859308138541650L, 174421003123810033381790236221837856515717326914686209725144085385038416771831243218121939343204739172142573392914539954561702192037384452671829208544052005809111211272767217997373349539621608610104198849289553199153550766664805075406312493730029215085806581713874721280621739864343621647737777392917211017939L)
```
### Solution
We start by realizing that the given value of $g$ is not actually a generator of $\mathbb{F}_p$.
In reality, $g$ generates a very small subgroup, having order of $31337$. This can be easily computed with sage or brute force in Python.
This implies that there are at most $31337$ possible values for the outputs for the PRNG.
We calculate them all, then sort. Denote the result as $x_1 \le x_2 \le \cdots \le x_{31337}$.
We now want to find a pair $(i, j)$ such that $N = \text{nxt}(x_i^2 + x_j^2) \cdot \text{nxt}(2 x_ix_j)$, where $\text{nxt}(n)$ is the smallest prime larger than $n$. This gives a solution with approximately $31337^2/2$ calls to the $\text{nxt}$ function. This is too slow to solve the problem.
To optimize, we use two tricks. First, due to small prime gap, one may assume that
$$
(x_i^2+x_j^2) \cdot 2x_ix_j \le N \le (x_i^2+x_j^2+1000) \cdot (2x_ix_j+1000)
$$ holds true. This cuts the number of pairs to compute. Also, if we fix $x_i$, the values of $x_j$ that satisfy this inequality forms an interval. Therefore, one can use binary search to efficiently compute this interval. This is efficient enough for the task.
### Implementation
```python=
from Crypto.Util.number import *
p = 68396932999729141946282927360590169590631231980913314894620521363257317833167
g = 11148408907716636563689390048104567047599159688378384611325239859308138541650
N = 174421003123810033381790236221837856515717326914686209725144085385038416771831243218121939343204739172142573392914539954561702192037384452671829208544052005809111211272767217997373349539621608610104198849289553199153550766664805075406312493730029215085806581713874721280621739864343621647737777392917211017939
c = 117667582947026307482709850318214820165964980495414423711608614681075036546959172088083682928734150238100258554942348560628319669155021151214088627854571799267413754120136204715904365400299634909310436631535142237485014585244686834739846288478469145431250711508705770591654103989678439960043788163169606969942
e = 0x10001
def hq_prng(x, p, g):
global rsf;
rng = 0
for i in range(256):
x = rsf[x]
if x < (p-1) // 2:
rng += 2**i - 1
elif x > (p-1) // 2:
rng -= 2**i + 1
else:
rng ^= 2**(i + 1)
x = x % 31337
if rng <= 0:
return -rng
return rng
rsf[0] = 1
for i in range(1, 31337):
rsf[i] = (g * rsf[i-1]) % p
WOW = [0] * 31337
for i in range(0, 31337):
WOW[i] = hq_prng(i, p, g)
WOW.sort()
for i in range(0, 31337):
lef = i+1
rig = 31336
mid, best = 0, 0
while lef <= rig:
mid = (lef + rig) // 2
if (WOW[i]*WOW[i] + WOW[mid] * WOW[mid]) * 2 * WOW[i] * WOW[mid] >= n:
best = mid
rig = mid -1
else:
lef = mid + 1
if best == 0:
continue
for j in range(best-1, min(best+30, 31337)):
u = WOW[i] * WOW[i] + WOW[j] * WOW[j]
v = 2 * WOW[i] * WOW[j]
if u * v <= n and n <= (u+1000) * (v+1000):
u = nextprime(u)
v = nextprime(v)
if u * v == n:
break
u = 13207168490744652956999406596846767472614127517045010655090178723910296606220559473477009696618646553552917605315941229263316963221556883007951846286507319
v = 13206540315287197799978983146788490475082830408392129019383447128092673850363700139125558344894148410716241976023782262109119063597770109472702331423302981
phi = (u-1)*(v-1)
d = inverse_mod(e,phi)
flag = pow(c,d,N)
print(long_to_bytes(flag))
```
### Flag
`CCTF{r341Ly_v3ryYyyyYY_s3cUrE___PRNG___}`
---
## Mad Hat
### Challenge
#### Solved by: rkm0959
##### Points: 217
> A dream is not reality, but who's to say which is which?
```python
import random
from secret import p, flag
def transpose(x):
result = [[x[j][i] for j in range(len(x))] for i in range(len(x[0]))]
return result
def multiply(A, B):
if len(A[0]) != len(B):
return None
result = []
for i in range(len(A)):
r = []
for j in range(len(B[0])):
r.append(0)
result.append(r)
for i in range(len(A)):
for j in range(len(B[0])):
for k in range(len(B)):
result[i][j] += A[i][k] * B[k][j]
return result
def sum_matrix(A, B):
result = []
for i in range(len(A)):
r = []
for j in range(len(A[0])):
r.append(A[i][j]+B[i][j])
result.append(r)
return result
def keygen(p):
d = random.randint(1, 2**64)
if p % 4 == 1:
Q = []
for i in range(p):
q = []
for j in range(p):
if i == j:
q.append(0)
elif pow((i-j), int ((p-1) // 2), p) == 1:
q.append(1)
else:
q.append(-1)
Q.append(q)
Q_t = transpose(Q)
H = []
r = []
r.append(0)
r.extend([1 for i in range(p)])
H.append(r)
for i in range(1, p + 1):
r = []
for j in range(p + 1):
if j == 0:
r.append(1)
else:
r.append(Q[i-1][j-1])
H.append(r)
H2 = [[0 for j in range(2*(p+1))] for i in range(2*(p+1))]
for i in range(0, p+1):
for j in range(0, p+1):
if H[i][j] == 0:
H2[i*2][j*2] = 1
H2[i*2][j*2+1] = -1
H2[i*2+1][j*2] = -1
H2[i*2+1][j*2+1] = -1
elif H[i][j] == 1:
H2[i*2][j*2] = 1
H2[i*2][j*2+1] = 1
H2[i*2+1][j*2] = 1
H2[i*2+1][j*2+1] = -1
else:
H2[i*2][j*2] = -1
H2[i*2][j*2+1] = -1
H2[i*2+1][j*2] = -1
H2[i*2+1][j*2+1] = +1
ID = [[(-1)**d if i == j else 0 for i in range(len(H2))] for j in range(len(H2))]
H2 = multiply(ID, H2)
return(H2, d)
else:
Q = []
for i in range(p):
q = []
for j in range(p):
if i == j:
q.append(0)
elif pow( (i-j), int ((p-1) // 2), p) == 1:
q.append(1)
else:
q.append(-1)
Q.append(q)
Q_t = transpose(Q)
Q_Q_t = multiply(Q, Q_t)
H1 = []
H1.append([1 for i in range(p+1)])
for i in range(1, p +1):
r = []
for j in range(p +1):
if j == 0:
r.append(-1)
elif i == j:
r.append(1 + Q[i-1][j-1])
else:
r.append(Q[i-1][j-1])
H1.append(r)
ID = [[(-1)**d if i == j else 0 for i in range(len(H1))] for j in range(len(H1))]
H1 = multiply(ID, H1)
return(H1, d)
def encrypt(msg, key):
matrix = key[0]
d = key[1]
m = [[ord(char) for char in msg ]]
de = [[-d for i in range(len(msg))]]
C = multiply(m, matrix)
cipher = sum_matrix(C, de)
return cipher
key = keygen(p)
flag = flag + (len(key[0][0]) - len(flag)) * flag[-1]
cipher = encrypt(flag, key)
print('cipher =', cipher)
```
### Solution
By analyzing the dimensions of the ciphertext, it's straightforward to find $p=37$.
Since the matrix part of the secret key is only determined by $p$ and the parity of $d$, we have two possible matrices to consider. Also, if we fix $d$, we can compute the plaintext by solving a system of linear equations. We proceed this way.
If we iterate over $d$ simply as integers, the solution of the equation may contain rational, non-integer numbers. This is slow and prone to floating-point errors, (unless we take proper care) so we will use another trick.
Since all the ord values in the plaintext are between $0$ and $256$, we will take this entire problem into $\mathbb{F}_{257}$. This way, we can try $257$ different values of $d$, solve the system without worrying about floating error, and retrieve our answer.
### Implementation
```python
## keygen(d) : simply keygen with p=37, d's parity
MAT0 = keygen(0)
MAT1 = keygen(1)
MM0 = Matrix(GF(257), MAT0)
MM1 = Matrix(GF(257), MAT1)
adv = [1]*76
adv = vector(GF(257), adv)
AD0 = MM0.solve_right(adv)
AD1 = MM1.solve_right(adv)
cipher = [-3459749918754130611, -3459749918754138177, -3459749918754137803, -3459749918754138385, -3459749918754138025, -3459749918754138097, -3459749918754138073, -3459749918754138245, -3459749918754138183, -3459749918754138445, -3459749918754137991, -3459749918754138597, -3459749918754138309, -3459749918754138309, -3459749918754138279, -3459749918754138771, -3459749918754138327, -3459749918754138485, -3459749918754138233, -3459749918754138389, -3459749918754138207, -3459749918754138555, -3459749918754138141, -3459749918754138501, -3459749918754138677, -3459749918754138297, -3459749918754138563, -3459749918754138439, -3459749918754138429, -3459749918754138041, -3459749918754138611, -3459749918754138469, -3459749918754138217, -3459749918754138585, -3459749918754138403, -3459749918754138177, -3459749918754137777, -3459749918754138587, -3459749918754138231, -3459749918754138677, -3459749918754138127, -3459749918754138679, -3459749918754137789, -3459749918754138305, -3459749918754138025, -3459749918754138301, -3459749918754137941, -3459749918754138489, -3459749918754137583, -3459749918754138297, -3459749918754137949, -3459749918754138475, -3459749918754137879, -3459749918754138813, -3459749918754137981, -3459749918754138395, -3459749918754138201, -3459749918754138459, -3459749918754138195, -3459749918754138617, -3459749918754138003, -3459749918754138557, -3459749918754138429, -3459749918754138499, -3459749918754137951, -3459749918754138673, -3459749918754137975, -3459749918754138341, -3459749918754138121, -3459749918754138375, -3459749918754137869, -3459749918754138459, -3459749918754137739, -3459749918754138405, -3459749918754137921, -3459749918754138775]
res = vector(GF(257), cipher)
XX = MM0.solve_right(res)
YY = MM1.solve_right(res)
for i in range(0, 257):
stX = ""
stY = ""
for j in range(0, 76):
XX[j] += AD0[j]
YY[j] += AD1[j]
for j in range(0, len(XX)):
if (int)(XX[j]) <= 255:
stX = stX + chr((int)(XX[j]))
for j in range(0, len(YY)):
if (int)(YY[j]) <= 255:
stY = stY + chr((int)(YY[j]))
if "CCTF" in stX:
print(stX)
if "CCTF" in stY:
print(stY)
```
### Flag
``` CCTF{TH13_i3_Hadamard_rip_y0ung_&_bri11iant_Paley!} ```
## Heaven
### Challenge
#### Solved by: Q7, Robin_Jadoul
##### Points: 226
```python
from bitstring import BitArray
from heaven import seventh_seal, oh, no, new_testament
def matthew_effect(shire, rohan):
gandalf = ''
for every, hobbit in enumerate(shire):
gandalf += oh if ord(hobbit) ^ ord(rohan[every]) == 0 else no
return gandalf
def born_to_die(isengard):
luke = 0
for book in new_testament:
luke ^= ord(isengard[book])
lizzy_grant = oh + isengard[:-1] if luke == 0 else no + isengard[:-1]
return lizzy_grant
david = len(seventh_seal)
elf = seventh_seal
lord = BitArray(bytes=bytes(open('flag.jpg', 'rb').read())).bin
bilbo = len(lord)
matthew = 0
princess_leia = ''
destiny = bilbo // david
apocalypse = bilbo % david
for i in range(32):
elf = born_to_die(elf)
while matthew < destiny:
princess_leia += matthew_effect(elf, lord[matthew * david : (matthew + 1) * david])
elf = born_to_die(elf)
matthew += 1
princess_leia += matthew_effect(elf[:apocalypse], lord[matthew * david :])
res = open('flag.enc', 'wb')
res.write(bytes(int(princess_leia[i : i + 8], 2) for i in range(0, bilbo, 8)))
```
### Solution
After some renaming and minor reverse engineering of the challenge logic, we see that a jpg image has been xor'ed with a keystream generated from an LFSR. Each time a key-sized block is xored, and the key is forwarded one step in the LFSR.
Xor the encrypted file with a JFIF jpg file header to try to recover the current state of the LFSR.
```python
from bitstring import BitArray
pt = BitArray(bytes=bytes.fromhex('FFD8FFE000104A4649460001')).bin
with open('flag.enc', 'rb') as f:
content = f.read()
ct = BitArray(bytes=content).bin
key = ''
for i, j in zip(pt, ct):
key += str(int(i) ^ int(j))
print(key)
```
Then we can get
```python=
1100011100101011000
0110001110010101100
0011000111001010110
0001100011100101011
1000110001110010101
0
```
Since we know from the source code that encryptions under consecutive keys share almost the entire key (`x...xa` and `bx...x`), we can recover the length of the key from this. We can observe this rotation already in the above listing of the bits, thanks to our insertion of newlines in the right positions.
Finally we can brute force the polynomial to recover the origin image file.
### Implementation
```python
from bitstring import BitArray
key = '1100011100101011000'
seventh_seal = key
oh = '0'
no = '1'
def matthew_effect(shire, rohan):
gandalf = ''
for every, hobbit in enumerate(shire):
gandalf += oh if ord(hobbit) ^ ord(rohan[every]) == 0 else no
return gandalf
new_testament = []
def born_to_die(isengard):
luke = 0
for book in new_testament:
luke ^= ord(isengard[book])
lizzy_grant = oh + isengard[:-1] if luke == 0 else no + isengard[:-1]
return lizzy_grant
a = b'1100011100101011000'
b = b'0110001110010101100'
c = b'0011000111001010110'
d = b'0001100011100101011'
e = b'1000110001110010101'
for i in range(19):
for j in range(i+1, 19):
for k in range(j+1, 19):
for l in range(k+1, 19):
if a[i] ^ a[j] ^ a[k] ^ a[l] == \
b[i] ^ b[j] ^ b[k] ^ b[l] == \
c[i] ^ c[j] ^ c[k] ^ c[l] == \
e[i] ^ e[j] ^ c[k] ^ c[l] == 0:
if d[i] ^ d[j] ^ d[k] ^ d[l] == 1:
print(i, j, k, l)
seventh_seal = '1100011100101011000'
new_testament = [i, j, k, l]
david = len(seventh_seal)
elf = seventh_seal
lord = BitArray(bytes=bytes(open('flag.enc', 'rb').read())).bin
bilbo = len(lord)
matthew = 0
princess_leia = ''
destiny = bilbo // david
apocalypse = bilbo % david
# for i in range(32):
# elf = born_to_die(elf)
while matthew < destiny:
princess_leia += matthew_effect(elf, lord[matthew * david: (matthew + 1) * david])
elf = born_to_die(elf)
matthew += 1
princess_leia += matthew_effect(elf[:apocalypse], lord[matthew * david:])
res = open(f'flag_{i}-{j}-{k}-{l}.jpg', 'wb')
res.write(bytes(int(princess_leia[i: i + 8], 2) for i in range(0, bilbo, 8)))
res.close()
```
### Flag
`CCTF{0Ne_k3y_t0_rU1e_7hem_A11_4Nd_7o_d3crYp7_th3_fl4g!}`
---
## Model
### Challenge
#### Solved by: TheBlueFlame121, rkm0959, joachim
##### Points: 112
```py
def genkey(nbit):
while True:
p, q = getPrime(nbit), getPrime(nbit)
if gcd((p-1) // 2, (q-1) // 2) == 1:
P, Q = (q-1) // 2, (p-1) // 2
r = inverse(Q, P)
e = 2 * r * Q - 1
return(p, q, e)
def encrypt(msg, pubkey):
e, n = pubkey
return pow(bytes_to_long(msg), e, n)
```
### Solution
The key to solving this challenge is that
$$
e \equiv 2 Q^{-1}Q - 1 \equiv 2 - 1 \equiv 1 \pmod P
$$
So encrypting a message `m` we have, for some integer $k$,
$$
m^e \equiv m^{1 + \frac{k(q-1)}{2}} \equiv m \cdot m^\frac{k(q-1)}{2} \pmod q
$$
Looking at the second term, it can be reduced using Fermat's Little Theorem as follows:
$$
m^{\frac{k*(q-1)}{2}}\equiv (m^{(q-1)})^{\frac{k}{2}}\equiv 1^{\frac{k}{2}} \equiv 1^{\frac{1}{2}} \pmod q
$$
$1$ can have only two roots here, namely $\pm 1$. Therefore the encryption becomes
$$
m^e \equiv m^{1 + \frac{k(q-1)}{2}} \equiv \pm m \pmod q
$$
and we can compute $q = \text{gcd}(m^e \mp m, n)$ to factorize $n$ because $m^e \mp m \equiv 0 \pmod q$ is a multiple of $q$.
One last step that needs attention is that we recover $q$, not $p$, which matters for the recovery of $e$, as the primes are not interchangeable there.
### Implementation
```py
from Crypto.Util.number import *
import math
def derive_e(p,q):
P, Q = (q-1) // 2, (p-1) // 2
r = pow(Q, -1, P)
e = 2 * r * Q - 1
return e
N = 17790613564907955318126717576181316624843451677921227941389832111093895513875496295594784102148835715126789396535470416868485674231839509486983792844881941097589192520877472968227711640216343330193184235164710328845507199362646489303138765492026284976828397217700058854699501312701069031398507487060508966602815218264215778115331187180105972920333780067280854048113094622799996118383376340217782122945586262887450863620856214375258659362300743471229410735400189992359220551961441580630740022857304514895745174813529758766758733506538696933950282130984955594881517339093338779101106466633380921338845195921235252323721
flag_enc = 8216344743331409189205831776342200252705923796193752552649425282859227400617284746437075756157249953578189229459392338128783031841882560801175367779263048253787547952450480816724222285583987363793884961526545550108790689158473753461378651141379053427506957702375732452598640804768960184186521954448243004125900395894265450073650101942224629389391631821735998886688813393717718376391743836798122485350719355567861201466641767009303179260141365766023680788250688524528992952859061172438083227729190577738108854783536925967748199734513738782142055609101950770816942854252284355975365351013803601963990179403849614198536
m = bytes_to_long(b'0')
ct = 8131881080215090371487466406674376044247120209816118806949066423689730735519795472927218783473464525260814227606067990363574576048132004742403517775620572793232598693334765641758830271460405790617624271060522834683042735967050146871067065889288923913486919193720360254923458500009885281654478144592942337767754315130844294762755237864506689552987776560881357285727629827190391683150994461127468196118126587159811046890420456603820675085450111755868116701855834309297184745623927049652098555126342100576188575279791066071616897443075423425299542959405192350563251777193668273523389978129359003036691597884885020756981
q = math.gcd(ct - m, N)
assert isPrime(q)
p = N // q
e = derive_e(p,q)
d = pow(e, -1, (p-1)*(q-1))
m = pow(flag_enc,d,N)
print(long_to_bytes(m))
```
### Flag
`CCTF{7He_mA1n_iD34_0f_pUb1iC_key_cryPto9raphy_iZ_tHa7_It_l3ts_y0u_puBli5h_4N_pUbL!c_k3y_wi7hOuT_c0mprOmi5InG_y0Ur_5ecr3T_keY}`
---
## Gambler
### Challenge
In this challenge, we have access to a server with the following options
```
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ Hi, there is a strong relation between philosophy and the gambling! +
+ Gamble as an ancient philosopher and find the flag :) +
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
| Options:
| [C]ipher flag!
| [E]ncryption function!
| [T]ry the encryption
| [Q]uit
```
Where the encrypttion function is given by
```python
def encrypt(m, p, a, b):
assert m < p and isPrime(p)
return (m ** 3 + a * m + b) % p
```
#### Solved by: Cryptanalyse
##### Points: 87
### Solution
The goal is to decrypt the flag by recovering the hidden parameters $a,b,p$ and then solving the polynomial used in `encrypt`.
We can recover all parameters quite easily with the encrypt our own message function.
We can obtain from the server the value of
$$
y(x) = x^3 + ax + b \mod p
$$
for any input $x$.
We can recover $b$ by encrypting 0 as
$$
y(0) = 0^3 + a*0 + b = b \mod p
$$
Where we are assuming that $a,b < p$.
With the value of $b$, we can calculate
$$
y(1) = 1 + a + b \mod p, \quad \Rightarrow \quad a = y(1) - 1 - b
$$
Finally, with both $a,b$ recovered, we need to find the modulus $p$. If we encrypt a fairly small message, such that $y(x) > p$ we can use that
$$
x^3 + ax + b = y(x) + kp, \quad \Rightarrow \quad kp = x^3 + ax + b - y(x)
$$
Since we know a and b, we can compute all the terms on the right hand side of this equation and recover $k p$. All that remains is solving for $k$, which is pretty fast as $k$ is so small.
With all parameters known, we can request the encrypted flag from the server and solve the cubic equation
$$
x^3 + ax + b = c \mod p
$$
with anything you like (probably sage).
### Implementation
```py
import os
os.environ["PWNLIB_NOTERM"] = "True"
from pwn import *
from Crypto.Util.number import long_to_bytes
debug = False
r.sendline('C')
data = r.recvuntil(b'|\t[Q]uit\n')
enc = int(data.split()[3].decode().strip())
def encrypt_int(n):
r.sendline('T')
r.recvuntil(' your message to encrypt:\n')
r.sendline(str(n))
data = r.recvuntil(b'|\t[Q]uit\n')
b = int(data.split()[3].decode().strip())
return b
b = encrypt_int(0)
c = encrypt_int(1)
a = c - b - 1
enc_kp = encrypt_int(2)
kp = (2**3 + a*2 + b) - enc_kp
if debug:
print(a)
print(b)
print(kp)
p = max(f[0] for f in factor(kp))
PR.<x> = PolynomialRing(GF(p))
f = x^3 + a * x + b - enc
rts = f.roots()
print(rts)
flag = rts[0][0]
print(long_to_bytes(flag))
r.interactive()
```
### Flag
`CCTF{__Gerolamo__Cardano_4N_itaLi4N_p0lYma7H}`
## Classic
### Challenge
#### Solved by: Tux, hyperreality
##### Points: 226
> Classic is Easy but Essential!
```
b7UkM iK2L0 PUVnZ Ho79I tDAf0 PUvfQ G5jHo 7GwLG wL9It vfQHo 7G5j0 PUvfQ 9Ithd JkMiK 2LU2b 0PUkM B8Nih dJK2L GwL0P UHo7U 2bK2L
...
```
### Solution
Taking trigrams from the ciphertext, this becomes a classic monoalphabetic substitution cipher. See the script for more comments.
### Implementation
```python
import string
from collections import Counter
from cipher_solver.simple import SimpleSolver
with open('enc.txt') as f:
ctext = f.read().strip().replace(' ', '')
def chunks(l, n):
n = max(1, n)
return [l[i:i+n] for i in range(0, len(l), n)]
# 1. We suspect that groupings of 5 are there to confuse us.
# Let's break chars into groups of different sizes and look at
# the size of the set
for i in range(1,10):
unique = len(set(chunks(ctext, i)))
print(f"{unique} unique groups when split into groups of length {i}")
# 2. Breaking into groups of 3 (trigrams) gives much less unique chars
chunked = chunks(ctext, 3)
freq = Counter(chunked).most_common()
print(freq)
# 3. Build a substitution table for each trigram to a different letter
# only important thing is that the most frequent trigram corresponds to a space
subs = {}
alphabet = " " + string.ascii_lowercase + string.ascii_uppercase
cur = 0
for trigram in freq:
subs[trigram[0]] = alphabet[cur]
cur += 1
print(subs)
# 4. Make the substitutions
substituted = "".join([subs[c] for c in chunked])
print(substituted)
# 5. Use any algorithm for solving substitution ciphers (quipqiup also works)
s = SimpleSolver(substituted)
s.solve()
# 6. It's readable and the flag is visible after a couple of manual
# substitutions
ptext = s.plaintext()
ptext = ptext.replace('z', 'T')
ptext = ptext.replace('q', '_')
print(ptext)
```
### Flag
`CCTF{The_main_classical_cipher_types_are_substitution_ciphers}`
## Complex to Hell
### Challenge
#### Solved by: pcback, joseph, UnblvR
#### Points: 300
> I Already Know I'm Going to Hell
>
> At This Point, It's Really Go Big Or Go Home!
```python
import math
import string
import random
from secret import flag, key
mapstr = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!{}_"
def multiply(A ,B):
ac,ar,bc,br = len(A[0]), len(A), len(B[0]), len(B)
if ac != br:
return None
result = []
for i in range(ar):
r = []
for j in range(bc):
r.append(0)
result.append(r)
for i in range(ar):
for j in range(bc):
for k in range(br):
result[i][j] += A[i][k] * B[k][j]
return result
def comple_congruent (z):
a = z.real % len(mapstr)
b = z.imag % len(mapstr)
return a + b * 1j
def plain_to_matrix(msg ,n):
p = int(math.ceil(len(msg) // (2 * n))) + 1
matrix_row_size = n
matrix_col_size = p
index = 0
matrix_plain = []
for i in range(matrix_row_size):
col = []
for j in range(matrix_col_size):
if index >= len(msg):
col.append(0 + 0.j)
elif index == len(msg)-1:
col.append(mapstr.index(msg[index]) + 0.j)
index += 1
else:
col.append(mapstr.index(msg[index]) + mapstr.index(msg[index+1]) * 1.j)
index += 2
matrix_plain.append(col)
return matrix_plain
def encrypt(flag ,key):
n = len(key)
p = int(math.ceil(len(flag) // (2 * n))) + 1
matrix_plain = plain_to_matrix(flag, n)
key_congruent = []
for i in range(n):
r = []
for j in range(n):
r.append(comple_congruent(key[i][j]))
key_congruent.append(r)
cipher = multiply (key_congruent, matrix_plain)
result = []
for i in range(n):
r = []
for j in range(p):
r.append(comple_congruent(cipher[i][j]))
result.append(r)
return result
cipher = encrypt(flag, key)
print("cipher = ", cipher)
```
### Solution
tldr;
- Use flag format to set up system of equations.
- Bruteforce the first two entries on the 2nd row.
- Many keys allow decryption of the first row.
- Use last entries in first row, with knowledge of padding to bruteforce the full, correct key.
`plain_to_matrix(msg, n)` takes a message string as input and a row count `n`, and returns a matrix with `n` rows that has the characters of `msg` as complex numbers as entries (one complex number represents two characters). If the message doesn't fill the matrix completely, it is padded with `0`s.
`encrypt(msg, key)` encrypts the given message by left multiplying the message (as a matrix) by the $2 \times 2$ key. The size of the key space is $66^8$ which is infeasible to bruteforce.
We can use the flag format to reduce the amount of bruteforce required. Let the key be
$$
K = \begin{bmatrix}
a+bi & c+di \\
e+fi & g+hi
\end{bmatrix}$$
where $a,b,c,d,e,f,g \in \mathbb{Z}/66\mathbb{Z}$
Write the plaintext flag matrix as
$$M = \begin{bmatrix}
m_0 + m_1i & m_2 + m_3 i & \cdots & m_{32} + m_{33} i \\
m_{34} + m_{35} i & m_{36} + m_{37} i & \cdots & m_{66} + m_{67} i
\end{bmatrix}$$
and the ciphertext matrix as
$$C = \begin{bmatrix}
c_0 + c_1i & c_2 + c_3 i & \cdots & c_{32} + c_{33} i \\
c_{34} + c_{35} i & c_{36} + c_{37} i & \cdots & c_{66} + c_{67} i
\end{bmatrix}$$
(all coefficients in $\mathbb{Z}/66\mathbb{Z}$).
So $C = KM$.
From this we get the equations
$$\begin{aligned}
c_0 + c_1 i &= (a + bi)(m_0 + m_1 i) + (c + d_i)(m_{34} + m_{35} i) \\
c_2 + c_3 i &= (a + bi)(m_2 + m_3 i) + (c + d_i)(m_{36} + m_{37} i) \\
c_{34} + c_{35} i &= (e + fi)(m_0 + m_1 i) + (g + hi)(m_{34} + m_{35} i) \\
c_{36} + c_{37} i &= (e + fi)(m_2 + m_3 i) + (g + hi)(m_{36} + m_{37} i)
\end{aligned}$$
so
$$\begin{aligned}
c_0 &= am_0 - bm_1 + cm_{34} - dm_{35} \\
c_1 &= am_1 + bm_0 + cm_{35} + dm_{34} \\
c_2 &= am_2 - bm_3 + cm_{36} - dm_{37} \\
c_3 &= am_3 + bm_2 + cm_{37} + dm_{36} \\
c_{34} &= em_0 - fm_1 + gm_{34} - hm_{35} \\
c_{35} &= em_1 + fm_0 + gm_{35} + hm_{34} \\
c_{36} &= em_2 - fm_3 + gm_{36} - hm_{37} \\
c_{37} &= em_3 + fm_2 + gm_{37} + hm_{36}
\end{aligned}$$
We'll bruteforce $66^4$ values for $m_{34}, m_{35}, m_{36}$ and $m_{37}$ and solve for the 8 key values with the 8 equations. We already know $m_0, m_1, m_2$ and $m_3$ from the flag format.
Doing this quickly reveals the first row of the plaintext: `CCTF{This_0n3_Is_State_0f_th3_4rt_`.
With this, we can reduce the bruteforce amount to at most $66^3$. Fortunately for us, it turns out that the last 4 characters of the plaintext are `}000`, so we have enough information to enumerate possible keys with minimal bruteforce. We can use the exact same setup as above, except instead of bruteforcing $m_{34}, m_{35}, m_{36}$ and $m_{37}$, we take them to be `}000`. Solving the system will give us a vector $\mathbf{k} = (a,b,c,d,e,f,g,h)$, but this might not be the correct key.
Any vector of the form $\mathbf{k} + \mathbf{t}$ where $\mathbf{t}$ is in the kernel of the coefficients matrix, $A$, will satisfy the system. We can find all vectors in the kernel of $A$ by finding a basis for the kernel modulo each of the prime factors of $66$, and then combining them with the Chinese Remainder Theorem. In this case, the nullity of $A$ in $\mathbb{F}_3$ and $\mathbb{F}_{11}$ is $0$, and the nullity of $A$ in $\mathbb{F}_2$ is $4$. This means we'll need to enumerate at most $2^4$ possible keys.
Note on `inv(key)`: I couldn't find a way to use Sage's built-ins to find the inverse of a matrix with complex entries so I just used the following theory:
Suppose $K^{-1}$ exists. Write
$$K^{-1} = \begin{bmatrix}
a' + b'i & c' + d'i \\
e' + f'i & g' + h'i
\end{bmatrix}$$
Then, by definition
$$\begin{bmatrix}
a + bi & c + di \\
e + fi & g + hi
\end{bmatrix}
\begin{bmatrix}
a' + b'i & c' + d'i \\
e' + f'i & g' + h'i
\end{bmatrix} =
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
$$
so
$$\begin{aligned}
aa' - bb' + ce' - df' &= 1 \\
ab' + ba' + cf' + de' &= 0 \\
ac' - bd' + cg' - dh' &= 0 \\
ad' + bc' + ch' + dg' &= 0 \\
ea' - fb' + ge' - hf' &= 0 \\
eb' + fa' + gf' + he' &= 0 \\
ec' - fd' + gg' - hh' &= 1 \\
ed' + fc' + gh' + hg' &= 0
\end{aligned}$$
which is a system of 8 equations in 8 unknowns that can be easily solved.
### Implementation
```python
from itertools import product
mapstr = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!{}_"
cipher = [ [(24+36j), (41+47j), (3+27j), (36+41j), (57+58j), (11+24j), (33+7j), (52+64j), (26+23j), (30+35j), (64+39j), (52+19j), (39+45j), (33+31j), (3+17j), (21+32j), (15+55j)], [(33+44j), (15+39j), (64+50j), (44+41j), (39+20j), 42j, (16+12j), (63+27j), (9+52j), (39+64j), (5+18j), (53+25j), (47+31j), (5+49j), (24+8j), (57+9j), (38+16j)] ]
F = IntegerModRing(66)
def multiply(A ,B):
ac,ar,bc,br = len(A[0]), len(A), len(B[0]), len(B)
if ac != br:
return None
result = []
for i in range(ar):
r = []
for j in range(bc):
r.append(0)
result.append(r)
for i in range(ar):
for j in range(bc):
for k in range(br):
result[i][j] += A[i][k] * B[k][j]
return result
def inv(key):
a,b,c,d,e,f,g,h = key
M = [[a,-b,0,0,c,-d,0,0],
[b,a,0,0,d,c,0,0],
[0,0,a,-b,0,0,c,-d],
[0,0,b,a,0,0,d,c],
[e,-f,0,0,g,-h,0,0],
[f,e,0,0,h,g,0,0,],
[0,0,e,-f,0,0,g,-h],
[0,0,f,e,0,0,h,g]]
M = Matrix(F,M)
t = vector(F,[1,0,0,0,0,0,1,0])
i = M.solve_right(t)
a,b,c,d,e,f,g,h = map(ZZ, i)
I = [[a+b*1j, c+d*1j],[e+f*1j, g+h*1j]]
return I
def cong(z):
a = z.real() % 66
b = z.imag() % 66
return a + b*1j
def decrypt(key):
Kinv = inv(key)
key = [[cong(Kinv[i][j]) for j in range(2)] for i in range(2)]
M = multiply(key, cipher)
res = []
flag = ''
for i in range(2):
for j in range(17):
a = cong(M[i][j]).real()
b = cong(M[i][j]).imag()
flag += mapstr[int(a)] + mapstr[int(b)]
return flag
# first round, bruteforce m34,m35,m36,m37
# c0, c1, c2, c3 = 24, 36, 41, 17
# c34, c35, c36, c37 = 33, 44, 15, 19
# m0, m1, m2, m3 = 38, 38, 55, 41
# RECOVERS first row: CCTF{This_0n3_Is_State_0f_th3_4rt_
c0, c1, c2, c3 = 21, 32, 15, 55
c34, c35, c36, c37 = 57, 9, 38, 16
m0, m1, m2, m3 = 4, 27, 29, 65
m34, m35, m36, m37 = 64, 0, 0, 0
A = [[m0,-m1,m34,-m35,0,0,0,0],
[m1, m0, m35, m34,0,0,0,0],
[m2, -m3,m36,-m37,0,0,0,0],
[m3,m2,m37,m36,0,0,0,0],
[0,0,0,0,m0,-m1,m34,-m35],
[0,0,0,0,m1,m0,m35,m34],
[0,0,0,0,m2,-m3,m36,-m37],
[0,0,0,0,m3,m2,m37,m36]]
v = [c0,c1,c2,c3,c34,c35,c36,c37]
A = Matrix(F, A)
v = vector(F, v)
x = A.solve_right(v)
A2 = Matrix(GF(2), A)
A2K = Matrix(F, A2.right_kernel_matrix())
# A3 and A11 have 0 nullity
for lc in product(range(2), repeat=A2.right_nullity()):
try:
t2 = A2K.linear_combination_of_rows(lc)
t = vector([crt([int(a2), 0, 0], [2, 3, 11]) for a2 in t2])
key = x + t
flag = decrypt(key)
print(flag)
except ValueError:
pass
except KeyboardInterrupt:
exit()
```
### Flag
`CCTF{This_0n3_Is_State_0f_th3_4rt_and_C0mplex_is_Truly_compl3x!!}`
## Namura
### Challenge
#### Solved by: Q7
##### Points: 375
```python
def encrypt(pubkey, msg):
C = 0
for i in range(n):
C += pubkey[i] * int(msg[i])
return C
flag = flag.lstrip('CCTF{').rstrip('}')
bflag = bin(bytes_to_long(flag.encode('utf-8')))[2:]
n = len(bflag)
u = n - 30
pubkey = keygen((n+1) // 3, n, u)
print('pubkey =', pubkey)
enc = encrypt(pubkey, bflag)
print('enc =', enc)
```
### Solution
This looks like a knapsack cryptography problem, which are usually solved by lattice reduction algorithms modelling a Shortest Vector Problem (SVP). We noticed that the title of the challenge "Namura" gave away the paper describing this algorithm, Naskao and Murakami's (Knapsack Public-Key Cryptosystem Using Chinese Remainder Theorem)[https://eprint.iacr.org/2007/107.pdf]. Section 4.2 of the paper describes a lattice that can solve low density subset sum problems, and the public key in this challenge had a very low density:
```python
d = len(pubkey) / log(max(pubkey), 2)
print(CDF(d))
0.5625
```
Since the flag should be all printables, we can reduce the dimension of the pubkey by removing the corresponding number to the MSB of each character in the plaintext.
```python
new = []
pubkey = [0] + pubkey
for i in range(len(pubkey)):
if i % 8 == 0:
continue
new.append(pubkey[i])
print('pubkey =', new)
```
Then we can just solve this like other knapsack problems by bruteforcing the permutation and using BKZ to find the SVP.
### Implementation
```python
import re
import random
import multiprocessing as mp
from functools import partial
def check(sol, A, s):
"""Check whether *sol* is a solution to the subset-sum problem.
"""
return sum(x*a for x, a in zip(sol, A)) == s
def solve(a, s, ID=None):
rand = random.Random(x=ID)
mat = []
for idx,val in enumerate(a):
mat.append([0]*idx + [1] + [0]*(len(a)-idx-1)+[val])
mat.append([0]*len(a)+[-s])
# main loop
itr = 0
start_time = cputime()
while True:
itr += 1
# 2. Randomly shuffle
l = mat[::]
shuffle(l, random=rand.random)
# 3. BKZ!!!
m = matrix(l)
t_BKZ = cputime()
l_sol = m.BKZ(block_size=25)
print(f"{itr} runs. BKZ running time: {cputime(t_BKZ):.3f}s")
for line in l_sol:
if all([x >= 0 for x in line[:-1]]):
print(line)
print(check(line,a,s))
print(f"After {itr} runs. FIND SVP!!! {line}\n"
f"Single core time used: {cputime(start_time):.3f}s")
return True
enc = 154657917005376465967753276253676484467260782425419406781078357515
pubkey = [636730424634282684150787505024636846878192530834301373045417941, 443443736056701854821550045409138156747702906153207509789193893, 4044894679347221866903041471393250783970070284064844489844729640, 2438178506188801348411667154785222321653401060527584288473058029, 1900607069477409243358471897897077706622577630696771143373974126, 4396893130381899655054557551793492148977658211100513328122993482, 2601912276825314189427819328705612999759768062840709690416685851, 849578696430489144601066711846105434868737506048858961510584478, 867634152731852110202428052792503837522496305953184128350918090, 2141949199052254673518707523413310868963934449025085556791898943, 1317724781892829476727276429613649391725697391917627197350586077, 846616203254169113248714620324777288157484807522832537271896727, 1889890413622399357217368964385384275068207071755568870885142697, 4345106754542111105556800435292359436746763182165461814839878219, 1844751943408649439970784234819027788878268101086942786334241578, 4635151867785248653584925319820032342108353583278365090165351369, 1891260029110631153447767958167471428147295737587261835048395769, 3273672699905851794278838098554938393037792687468962414002119644, 4759683391852904086863354069372064775438697384972606618058259428, 2277479715112568474291874878404028785747567257268529120464806983, 712281270914494089486011482407537474741428127403029959878626851, 4663860235979475414650446442104011820603148660069426522253772670, 3570757581386148492619721379754470899316095256123109990599128391, 4609713244848853151872498160877375734335329160891300656414838786, 1431248994688391495017629590719567118297228062918817671705412012, 2225618736576399852718197161416790353023368081178287753385225648, 4782768885432039605448539230699045953181097923357764740448690485, 1025808412433473089433862844337525335386046496037581875356716631, 2850703152833612251035169162871614900872662336925683266673455769, 4686484042664673737330267137247259184248980902553457550045106744, 3316117133062845045327521738264790714934051828005331038083037906, 1411496297445655314847983724570982636448577335114241954690062680, 2542720351620819402979547749565244924618621495731029455602801063, 4197157173419472170084161918188987699514176876278506629655813541, 775178221793495085043576729609381220589053240944436598437451103, 1341597796943613200200560889564801116846969301604051962802959921, 4724275587384586890632093268426638078191399337509178017491641396, 2254966368661541088781913210011063323766242664855534020654216185, 1559111672805843337464695743725374999443380244436636784823457268, 263060461355351726244024949311923372968467484234342136010504498, 4218489168395358789072676527116792449437414059225489587311420630, 2251347608406477583876276692162280889042972229705782250944073182, 1048197300230894759772482326800601949486880189444304544917201349, 4594309375612539584017914006965726879737368434732989117961461158, 1233526648681303204756491942769500757542366936959132748188681389, 3016611933554222534504704995395833948561521013355966057174149640, 685431642960387458833365483769661272653394129002170162343687962, 1252350578439116321952733140441764993245772656606639708501799071, 2004856906093670950398190666612521156885201358615487450361722687, 1725528220657822102510144312466698156124143365979935333948441423, 3301536380780212554033742823735941195638359575128262344444357806, 3361176781081176991336986769591969284375994647164396417238879397, 2555688594908398218735938381172552745926292876995621798813594216, 2149199142659861721027875250011594210747138266017264150889296633, 4654853318545885657451422703700711659405223637471250014707272999, 1783827755250002883819223478577480687561868815037598618999110299, 3876452588731221361888242546888347728419654382142841199604124779, 2283317070521561115970687892255141823986922119608171153201553969, 3015343638915794545630411225203386258523748035633382700837350107, 1308963799032621611684027617168973833892399982687941479751647735, 3363298156592318867171609036073104624481755649616128282937579774, 3543718722328215918394832245155182570535205536855659505934745836, 2955555006922666284454361589146164283232856958998231643765012061, 4193238914021395832431998242809775488323071053203281739810565939, 4863715450542324142694503897491361069694288484386266524822426647, 3583711168144466683911674650704848504341023445180872465082660398, 1433492863048866856968843544774985957106873111077658213115876127, 3622680772935480479302879234497984985614630209532096422962674742, 3887543917518693741822422553185837022122830870466259214366790339, 3010960827639423613523800853443011766752449479334524527050675334, 1675955542074383948970870230135814936799951109866034174734491734, 2568984843336400124353481960719548494069287783874504372170058935, 680042408260630675242336818143271325154353883745350135887078713, 1896768391347692167859873865813768792359296006947445277687988097, 537513148597668578568712785471862479586342936485511258184103046, 4338318157572996055378474172251186724034148657838505626251846209, 4509359887372553408550688030273180923282246069532844476087185588, 1961425576962957081785371096529881351777256192797473186708183898, 4562726127192998241808421239521775685020063730950933119470565151, 3197416476037069116835447572914275965582808251383336065711778098, 4509743379431751154130020063323115916220642219739358425391068150, 1737231313740527925458531852974418083735884963087687882655818328, 4723771434844173636187013002792278070911838005170476297565209636, 4021068815924596682472342770957679146819658388809493963529859273, 4786593367935490268774249574977281762592209022792374805751998882, 1706847947841349067687051586871379604391823960780007506398289654, 2092911436130136930529034363620771320336826052044341129920779847, 2386542753409262049262444109479898339116742017285966198413932291, 2575514997936878781309794857665223684996125674280321049577858392, 2526059212864002845504783002187945419965243527858703947395965701, 2077055376963690862993188737229202782309424513798741527458096967, 1947721666793448806619506886745665574368753315129031773531178573, 2321982120042809240576670901783025887795295409352093643395133004, 4191930348600938505176612143361132888157091847500134549846473180, 1279873852200144323116032749112043797286486924653552312015287694, 3934811009597203954835516432740855968621865146569217009553064951, 804570958275502176779582603101955727481164663345322968855176622, 4755601230261360181533138175300662604366870408130917516343576381, 2016264908613514961521473342929083040444069560476054659007958347, 3857121931198808981033402131835999166260880661479936388701406991, 4787908501772479625441292392638080593307265124479164945134226910, 403228266126326263488043524077179619385866145325037513940941892, 4080757802977772396554968304371742747141072297333640725823656444, 248086288384249359079536769334310714884272887049336400711180125, 1607777042247987295060365154963999272145526955355524894746933487]
solve_n = partial(solve, pubkey, enc)
CPU_CORE_NUM = 8
with mp.Pool(CPU_CORE_NUM) as pool:
reslist = pool.imap_unordered(solve_n, range(CPU_CORE_NUM))
# terminate all processes once one process returns
for res in reslist:
if res:
pool.terminate()
break
```
Output:
> After 19 runs. FIND SVP!!! (1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0)
Single core time used: 643.215s
```python
flag = ''
svp = (1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1,
0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0)
for i in range(0, len(svp), 7):
flag += '0' + ''.join(map(str, svp[i:i+7]))
print(b'CCTF{'+long_to_bytes(int(flag, 2))+b'}')
```
### Flag
`CCTF{MuR4kam1_nA54K0}`