Yuto Horikawa
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    --- robots: noindex, nofollow lang: ja dir: ltr breaks: true slideOptions: theme: white transition: slide --- <style> .reveal, .reveal h1, .reveal h2, .reveal h3, .reveal h4, .reveal h5, .reveal h6 { font-family: "Source Sans Pro", "Helvetica Neue", Helvetica, Arial, "Microsoft JhengHei", Meiryo, sans-serif; } h1, h2, h3, h4, h5, h6 { text-transform: none !important; } .color-yellow{ color: yellow; } .alert { padding: 15px; margin-bottom: 20px; border: 1px solid transparent; border-radius: 4px; text-align: left; padding: 10px 0; } .alert-info { color: #31708f; background-color: #d9edf7; border-color: #bce8f1; } .alert-success { color: #3c763d; background-color: #dff0d8; border-color: #d6e9c6; } .alert-danger { color: #a94442; background-color: #f2dede; border-color: #ebccd1; } .reveal .slides span { text-align: left; display: inline-block; } p, li { font-size: 0.88em !important; } li>p { font-size: 1em !important; } </style> # JuliaTokai #8 (2020/11/14) ###### tags: `JuliaTokai` `prezentation` --- # MCMCで求める<br>Holy Numbers [堀川 由人, ほりたみゅ, @Hyrodium](https://hyrodium.github.io/profile) ---- ### おしながき * 自己紹介 * Holy Numbers * MCMC * モデリング * 計算結果 * まとめ等 --- ## 自己紹介 私の学生時代、知りたいですよね..? * 高専時代 * 大学以降 ---- ### リンク機構と私 (高専時代) * 高専ロボコン(1年-3年) * リンク機構大好き少年 ![](https://scontent.fitm1-1.fna.fbcdn.net/v/t31.0-8/1397786_430884727034379_961664847_o.jpg?_nc_cat=100&_nc_sid=174925&_nc_ohc=k1sJeqBMNMcAX9VQrfk&_nc_ht=scontent.fitm1-1.fna&oh=64267c4a255ceff72885fa56e98097f4&oe=5FB457EB =x185) ![](https://media2.giphy.com/media/oHymWVC6HvHGFsvyh9/giphy.gif =x185) ![](https://media0.giphy.com/media/nUShFKBurfcEC9BVXy/giphy.gif =x185) ![](https://i.giphy.com/media/kxcxqcnx2wWhmoI1HU/giphy.webp =x200) ![](https://i.giphy.com/media/2MIsxL1OfwTZRgxora/giphy.gif =x200) ---- ### リンク機構と私 (大学以降) * まだまだリンク機構は面白い * 3年前のストローで作った作品 ![](https://64.media.tumblr.com/7d53aa7b75c68f1af89e216394bcf3d0/tumblr_oxx7dfEO1d1s2lbywo1_500.gifv =x300) ![](https://64.media.tumblr.com/0771176b4f955aa8f8a9d1b86db16546/tumblr_oxx7dfEO1d1s2lbywo2_400.gifv =x300) ![](https://64.media.tumblr.com/32197c096a43d90086cd5152abb3e58d/tumblr_oxx7dfEO1d1s2lbywo3_400.gifv =x300) 最近の気持ち: **Juliaによる数値計算がアツい!!** --- ## Holy Numbers 本LTの題材の説明です * Strand Beest * Holy Numbers * やりたいこと! ---- ### Strand Beest * オランダの芸術家Theo Jansen氏による[作品](https://www.youtube.com/watch?v=MYGJ9jrbpvg) * 「風を食べて動く生命体」 ![](https://i.pinimg.com/originals/9e/96/0a/9e960a42ac3e13f4c683b60501b9840a.gif) ---- ### Holy Numbers (1) * 「聖なる13の数」 * Strand Beestのリンク比のこと * Tシャツも販売されていた ![](https://media2.giphy.com/media/RmOatrDXondfzHKHFy/giphy.gif =x300) ![](https://i.imgur.com/HvYybtl.png =x300) ![](https://static.wixstatic.com/media/75f4fd_8dbb918d71644eb6a1b6a8a0917ee151~mv2_d_3456_3120_s_4_2.jpg/v1/fill/w_1620,h_1462,al_c,q_85,usm_0.66_1.00_0.01/75f4fd_8dbb918d71644eb6a1b6a8a0917ee151~mv2_d_3456_3120_s_4_2.jpg =x300) ---- ### Holy Numbers (2) * リンク比マジ重要 * 少しでも変わると変な軌跡になる →滑らかに歩けない →**疑似直線**運動が必要 ![](https://media2.giphy.com/media/RmOatrDXondfzHKHFy/giphy.gif =x220) ![](https://media0.giphy.com/media/sryCwwa9AJ4Y8Dufwu/giphy.gif =x220) ![](https://media2.giphy.com/media/h7IuvXriVI8lfynXk9/giphy.gif =x220) ![](https://media3.giphy.com/media/cogjGUCbuBuXFbIU05/giphy.gif =x220) ---- ### やりたいこと! * このリンク比(Holy Numbers)を自分で求めたい! * あわよくば..もっと良いリンク比を見つけたい! ![](https://media2.giphy.com/media/RmOatrDXondfzHKHFy/giphy.gif =x350) ![](https://i.imgur.com/HvYybtl.png =x350) --- ## MCMC 最適化のための道具の紹介! * MCMCってなに? * MH法 * 焼き鈍し法 ---- ## MCMCってなに? (1) * **M**arkov **C**hain **M**onte **C**arlo * Markov Chain (マルコフ連鎖) * 前の状態を記憶する * Monte Carlo (モンテカルロ) * 確率的に実行する * サンプリング手法の一つ * ベイズ推論の応用でもよく使われる * (らしいですが、まだ詳しくないです..) *(最近勉強し始めた分野なのでマサカリ歓迎です!!)* ---- ## MCMCってなに? (2) * 与えられた確率分布$p(x)$を元にサンプリング * ヒストグラムが$p(x)$に一致する (すごい!) ![](https://i.imgur.com/UOVTYkj.png) ---- ## MH法 * Metropolis-Hastings法 (MCMC法の一つ) 1. 初期点$x_{0}$を決める 2. 点$x_{i}$をもとにランダムに$x'$を決定 3. 以下の漸化式で確率的に$x_{i+1}$を決定 ここで$\operatorname{rand}()$は$[0,1]$区間の一様乱数 $x_{i+1} = \begin{cases} x' & \left(\operatorname{rand}()<\frac{p(x')}{p(x)}\right) \\ x_{i} & (\text{otherwise}) \end{cases}$ * これだけで確率分布$p(x)$に従うサンプリングが可能 ---- ## 焼き鈍し法 (1) * MCMCって最適化問題にも使えるんですか? * 使えます!(焼き鈍し法) * 最適化問題 * エネルギー関数$x\mapsto E(x)$が最小になる$x$を求める * ハイパーパラメータ$\beta>0$を用意して以下で変換 * 分母は定数なので分母の計算は不要 $\displaystyle p(x) = \frac{\exp(-\beta E(x))}{\int_{x' \in D}\exp(-\beta E(x')) dx'}$ ---- ## 焼き鈍し法 (2) * ハイパーパラメータ$\beta>0$って? * 逆温度と呼ばれる量 (統計力学からの輸入) * $\beta$を徐々に大きくすると.. * エネルギーの小さい所に存在する確率が上がる! <iframe src="https://www.desmos.com/calculator/cvonetwtmk" width="600" height="400" frameborder="0" style="border:0" allowfullscreen></iframe> --- ## モデリング 「MCMCで求めるHoly Numbers」をどう実現するか? * 未知変数の設定 * エネルギー関数の設計 * 最適化手法の検討 ---- ### 未知変数の設定 * リンク機構を決定する変数は13個 * $(w_{1},\dots,w_{13})$とおきます * 全体の定数倍は同じ軌跡(相似)になる * 原動節の長さ$w_{13}$を固定すれば残るは12個 * つまり$(w_{1},\dots,w_{12})$が未知変数 ![](https://media2.giphy.com/media/RmOatrDXondfzHKHFy/giphy.gif =x330) ![](https://i.imgur.com/HvYybtl.png =x330) ---- ### エネルギー関数の設計 * 悪い軌跡には高いエネルギー:arrow_up: * 良い軌跡には低いエネルギー:arrow_down: ![](https://media2.giphy.com/media/RmOatrDXondfzHKHFy/giphy.gif =x220) ![](https://media0.giphy.com/media/sryCwwa9AJ4Y8Dufwu/giphy.gif =x220) ![](https://media2.giphy.com/media/h7IuvXriVI8lfynXk9/giphy.gif =x220) ![](https://media3.giphy.com/media/cogjGUCbuBuXFbIU05/giphy.gif =x220) 10     60     150     80 エネルギー関数の最小化問題に帰着される $E : \mathbb{R}^{12}\to \mathbb{R};(w_{1},\dots,w_{12})\mapsto E(w)$ ---- ### エネルギー関数の例 * 足先の位置ベクトル: $\displaystyle\newcommand\Pare[1]{\left(#1\right)} \newcommand\od[2]{\frac{d#1}{d#2}} \newcommand\pd[2]{\frac{\partial#1}{\partial#2}} \newcommand\sod[2]{\sfrac{d#1}{d#2}} \newcommand\spd[2]{\sfrac{\partial#1}{\partial#2}} \newcommand\tensor[2]{\boldsymbol{\mathrm{T}}^#1_#2} \newcommand\bm[1]{\boldsymbol{#1}}\bm{c}(\theta; w)=(c_x(\theta;w), c_y(\theta;w))$ * リンク比: $w=(w_{1},\dots,w_{12})$ * 原動節の角度: $\theta\in[0,2\pi)=[0,\tau)$ * 位置エネルギー (重力の一般化) $\displaystyle\newcommand\Pare[1]{\left(#1\right)} \newcommand\od[2]{\frac{d#1}{d#2}} \newcommand\pd[2]{\frac{\partial#1}{\partial#2}} \newcommand\sod[2]{\sfrac{d#1}{d#2}} \newcommand\spd[2]{\sfrac{\partial#1}{\partial#2}} \newcommand\tensor[2]{\boldsymbol{\mathrm{T}}^#1_#2} \newcommand\bm[1]{\boldsymbol{#1}} E_{\text{potential}}(w)=\int_{0}^{\tau} \Pare{c_y(\theta; w)-\min_{\theta'\in [0,\tau)}c_y(\theta';w)}^r d\theta$ * 面積一定 (風船) $\displaystyle E_{\text{area}}(w)=\Pare{\frac{1}{2}\int_{0}^{\tau} \Pare{\bm{c}(\theta; w)\times\od{\bm{c}(\theta; w)}{\theta}} d\theta-A_0}^2$ ---- ### 最適化の出番! * 次元の呪い * 10分割ずつ総当りだと$10^{12}$パターン * 他の方法ダメなの? (e.g. 最急降下法, Newton法) * 微分可能性: 無いかも (あるいは面倒) * 大域的性質: 局所最適なんて要らねえ(ドン!) * そこでMCMCですよ! $\displaystyle p(w) = \frac{\exp(-\beta E(w))}{\int_{w' \in \mathbb{R}^{12}}\exp(-\beta E(w')) d\mu(w')}$ --- ## 計算結果 色々な面白い結果が揃いました! * 使用言語 * デモ * 計算例 * 目的関数の設計について ---- ### 使用言語は..もちろんJulia! * 速い! * LLVMベースでJITコンパイル * 基本的にCやRustなどと同等の速度 * 書きやすい! * 動的実行 * 多重ディスパッチ ![](https://download.logo.wine/logo/Julia_(programming_language)/Julia_(programming_language)-Logo.wine.png =400x) ---- ### デモ ここで計算します:computer: * 10,000回の反復計算が1秒くらい * グラフィックスは[Luxor.jl](https://juliagraphics.github.io/Luxor.jl/stable/)で出力 * (最適化の計算より画像出力の方が遅い..) ---- ### 計算例 (1/5: 位置エネルギー最小化) とりあえず位置エネルギーを小さくしてみるか:thinking_face: $\displaystyle\newcommand\Pare[1]{\left(#1\right)} \newcommand\od[2]{\frac{d#1}{d#2}} \newcommand\pd[2]{\frac{\partial#1}{\partial#2}} \newcommand\sod[2]{\sfrac{d#1}{d#2}} \newcommand\spd[2]{\sfrac{\partial#1}{\partial#2}} \newcommand\tensor[2]{\boldsymbol{\mathrm{T}}^#1_#2} \newcommand\bm[1]{\boldsymbol{#1}} \begin{aligned}E_{\text{potential}}(w)&=\int_{0}^{\tau} \Pare{c_y(\theta; w)-\min_{\theta'\in [0,\tau)}c_y(\theta';w)}^r d\theta \\ E(w)&=E_{\text{potential}}(w)\end{aligned}$ ---- ### 計算例 (1/5: 位置エネルギー最小化) ![](https://media3.giphy.com/media/nRBir7Cv92yXe4I6Y4/giphy.gif =x450) 潰れた:hushed:!? ---- ### 計算例 (2/5: 面積一定) 軌跡は閉曲線だから面積が計算できるのでは:smirk: $\displaystyle\newcommand\Pare[1]{\left(#1\right)} \newcommand\od[2]{\frac{d#1}{d#2}} \newcommand\pd[2]{\frac{\partial#1}{\partial#2}} \newcommand\sod[2]{\sfrac{d#1}{d#2}} \newcommand\spd[2]{\sfrac{\partial#1}{\partial#2}} \newcommand\tensor[2]{\boldsymbol{\mathrm{T}}^#1_#2} \newcommand\bm[1]{\boldsymbol{#1}} \begin{aligned}E_{\text{area}}(w)&=\Pare{\frac{1}{2}\int_{0}^{\tau} \Pare{\bm{c}(\theta; w)\times\od{\bm{c}(\theta; w)}{\theta}} d\theta-A_0}^2 \\ E(w)&=E_{\text{area}}(w) \end{aligned}$ ---- ### 計算例 (2/5: 面積一定) ![](https://media2.giphy.com/media/UG4jSuCRUgMagfOUVv/giphy.gif =x450) 潰れないが、これでは歩行できん:worried: ---- ### 計算例 (3/5: 組み合わせ) 組み合わせたらいけそう:bulb: $\displaystyle\newcommand\Pare[1]{\left(#1\right)} \newcommand\od[2]{\frac{d#1}{d#2}} \newcommand\pd[2]{\frac{\partial#1}{\partial#2}} \newcommand\sod[2]{\sfrac{d#1}{d#2}} \newcommand\spd[2]{\sfrac{\partial#1}{\partial#2}} \newcommand\tensor[2]{\boldsymbol{\mathrm{T}}^#1_#2} \newcommand\bm[1]{\boldsymbol{#1}} \begin{aligned}E_{\text{area}}(w)&=\Pare{\frac{1}{2}\int_{0}^{\tau} \Pare{\bm{c}(\theta; w)\times\od{\bm{c}(\theta; w)}{\theta}} d\theta-A_0}^2 \\ E(w)&=E_{\text{potential}}(w)+E_{\text{area}}(w)\end{aligned}$ ---- ### 計算例 (3/5: 組み合わせ) ![](https://media3.giphy.com/media/gPnok8mjGBkQTwz5Jf/giphy.gif =x450) 結構ええんちゃう!?膝がめり込んでるが..:anguished: ---- ### 計算例 (4/5: 面積の調整) 軌跡の面積が大きすぎたか..?:face_with_rolling_eyes: $\displaystyle\newcommand\Pare[1]{\left(#1\right)} \newcommand\od[2]{\frac{d#1}{d#2}} \newcommand\pd[2]{\frac{\partial#1}{\partial#2}} \newcommand\sod[2]{\sfrac{d#1}{d#2}} \newcommand\spd[2]{\sfrac{\partial#1}{\partial#2}} \newcommand\tensor[2]{\boldsymbol{\mathrm{T}}^#1_#2} \newcommand\bm[1]{\boldsymbol{#1}} \begin{aligned}E_{\text{area}}(w)&=\Pare{\frac{1}{2}\int_{0}^{\tau} \Pare{\bm{c}(\theta; w)\times\od{\bm{c}(\theta; w)}{\theta}} d\theta-A_0}^2 \\ E(w)&=E_{\text{potential}}(w)+E_{\text{area}}(w)\end{aligned}$ ↓↓↓ $A_0$を半分くらいにしてみよう! ---- ### 計算例 (4/5: 面積の調整) ![](https://media3.giphy.com/media/2iTIf0mdxew2nfpLGj/giphy.gif =x450) かなりええんちゃう!?ちょっと細長いけれども..:grin: ---- ### 計算例 (5/5: 負の面積) 軌跡の面積って負の数にしてもいけるんやろか..:exclamation::question: $\displaystyle\newcommand\Pare[1]{\left(#1\right)} \newcommand\od[2]{\frac{d#1}{d#2}} \newcommand\pd[2]{\frac{\partial#1}{\partial#2}} \newcommand\sod[2]{\sfrac{d#1}{d#2}} \newcommand\spd[2]{\sfrac{\partial#1}{\partial#2}} \newcommand\tensor[2]{\boldsymbol{\mathrm{T}}^#1_#2} \newcommand\bm[1]{\boldsymbol{#1}} \begin{aligned}E_{\text{area}}(w)&=\Pare{\frac{1}{2}\int_{0}^{\tau} \Pare{\bm{c}(\theta; w)\times\od{\bm{c}(\theta; w)}{\theta}} d\theta-A_0}^2 \\ E(w)&=E_{\text{potential}}(w)+E_{\text{area}}(w)\end{aligned}$ ↓↓↓ $A_0$の代わりに$-A_0$にしてみよう! ---- ### 計算例 (5/5: 負の面積) ![](https://media2.giphy.com/media/RmOatrDXondfzHKHFy/giphy.gif =x350) ![](https://media1.giphy.com/media/0JNogfMEw8DMEXxhgo/giphy.gif =x350) 逆回転の軌跡ができた!:star-struck: ---- ### 計算結果の一旦まとめ * 疑似直線は意外と簡単に作れる * 目的関数(=エネルギー関数)次第で形状が大きく変化 * そもそも良い軌跡ってどんな形? * 同値な問い: 最適な目的関数とは..? ![](https://media2.giphy.com/media/RmOatrDXondfzHKHFy/giphy.gif =x250) ![](https://media1.giphy.com/media/0JNogfMEw8DMEXxhgo/giphy.gif =x250) ![](https://media3.giphy.com/media/2iTIf0mdxew2nfpLGj/giphy.gif =x250) ---- <!-- .slide: data-background="https://i.imgur.com/yEDcmq3.gif" --> ### 目的関数の設計 * 目的関数(=エネルギー関数)への要求 * 接地部の**軌跡は平坦**な方が良い:walking: * スムーズに歩くため * 接地部の**速度は一定**の方が良い:runner: * もっとスムーズに歩くため * **軌跡は高い**方が良い:arrow_down: * 重心が低い方が安定 * 軌跡の**上下幅は小さい**方が良い:battery: * 足を上げるのは無駄なエネルギー消費 * 軌跡の**上下幅は大きい**方が良い:mountain: * 不整地走破性のため * 各**リンクは短い**方が良い:balloon: * 軽量化したい * *全部を考慮するのは大変!!* <small>..(でも"それっぽい"ものは作れた)</small> --- ## まとめ等 長々とお付き合いありがとうございました。 <small>(10分に収まっていたでしょうか..?)</small> * Theo Jansen氏の計算との比較 * 色々実装した感想 * 参考文献など ---- ### Theo Jansen氏の計算との比較 * オリジナルのHoly Numbersは得られなかった * 目的関数が分からん.. * 新しい結果 * 逆向きの回転方向 * 軌跡の高さを(多少は)調整可能 * 軌跡の面積を(多少は)調整可能 ![](https://media2.giphy.com/media/RmOatrDXondfzHKHFy/giphy.gif =x220) ![](https://media1.giphy.com/media/0JNogfMEw8DMEXxhgo/giphy.gif =x220) ![](https://media2.giphy.com/media/HG5yOR4crWT8boHLAM/giphy.gif =x220) ![](https://media4.giphy.com/media/3dm2Y5E8kK7x0AQNtP/giphy.gif =x220) ---- ### Theo Jansenマジ天才!! * 1991年にはリンク比の計算を終えていた * [当時の計算環境](https://youtu.be/FFS-2axFo1Y?t=85)・インターネット環境..:floppy_disk: * GA(遺伝的アルゴリズム, ≠MCMC)を使ったらしい * リンク機構だけじゃない * 風力で歩く * 水を感知して制御 * 圧縮空気も動力源に ![](https://image.news.livedoor.com/newsimage/stf/e/1/e1f79_126_548c015f99a6dcd5b9d8d2b381ea05d2.gif) ---- ### 色々実装した感想 * リンク機構は楽しい! * 単純な回転運動から複雑な軌跡を生成 * MCMCは面白い! * しかし最適化での目的関数の設計は泥臭い.. * Juliaは最高! * 超速い!書きやすい!気持ちいい! ![](https://media1.giphy.com/media/0JNogfMEw8DMEXxhgo/giphy.gif =x220) ![](https://i.imgur.com/UOVTYkj.png =x220) ![](https://download.logo.wine/logo/Julia_(programming_language)/Julia_(programming_language)-Logo.wine.png =x220) ---- ### 参考文献など * Theo Jansen Japan * 公式サイト * https://theojansen.net/ * 計算統計Ⅱ * MCMC法とその周辺 * https://www.amazon.co.jp/dp/400730789X * 平面上の2円の交点の座標について * リンク機構の計算に使いました * https://hyrodium.github.io/pdf * HolyNumbersByMCMC * 今回の計算のリポジトリ * https://github.com/hyrodium/HolyNumbersByMCMC

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully