Yuto Horikawa
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    --- robots: noindex, nofollow lang: ja dir: ltr breaks: true slideOptions: theme: white transition: slide --- <style> .reveal, .reveal h1, .reveal h2, .reveal h3, .reveal h4, .reveal h5, .reveal h6 { font-family: "Source Sans Pro", "Helvetica Neue", Helvetica, Arial, "Microsoft JhengHei", Meiryo, sans-serif; } h1, h2, h3, h4, h5, h6 { text-transform: none !important; } .color-yellow{ color: yellow; } .alert { padding: 15px; margin-bottom: 20px; border: 1px solid transparent; border-radius: 4px; text-align: left; padding: 10px 0; } .alert-info { color: #31708f; background-color: #d9edf7; border-color: #bce8f1; } .alert-success { color: #3c763d; background-color: #dff0d8; border-color: #d6e9c6; } .alert-danger { color: #a94442; background-color: #f2dede; border-color: #ebccd1; } .reveal .slides span { text-align: left; display: inline-block; } p, li { font-size: 0.88em !important; } li>p { font-size: 1em !important; } </style> # 応用数理学会 (2018/09/03) ###### tags: `IGA4SurfaceEmbedding` --- ## 編み紙の数理 #### 〜材料の伸びを考慮した曲面設計最適化〜 $%a$ 堀川 由人 (大阪大学工学研究科) 垂水 竜一 (大阪大学基礎工学研究科) --- ### 目次 * はじめに * 研究目的/背景 * 問題設定 * 問題の定式化 * 弱形式定式化 * IGAによる離散化 * 計算結果 * 懸垂面 * 常螺旋面 * おわりに * なぜ編み紙なのか * 結言 ---- ### 研究背景 曲面で構成される部品は我々の日常生活で重要 オーダースーツ    テニスボール    ![](https://i.imgur.com/4paDIxa.jpg =230x)   ![](https://i.imgur.com/mVLKeX3.png =158x)![](https://i.imgur.com/uKANV3D.jpg =161x) * 平面部品を組み立てることで曲面を実現 * 組み立てる時にそれぞれのパーツに「変形」が発生する <font size="3">(図は https://astamuse.com/ja/published/JP/No/1994034326 , https://akebononikki.naturum.ne.jp/e356957.html より引用)</font> ---- ### 先行研究 平面材料から作られる立体形状の例 ![](https://i.imgur.com/81eZYlg.png =313x) ![](https://i.imgur.com/mZzqd0U.png =420x) * 手法: 曲面を可展面で近似してから展開図を構成 * 問題点: 材料の**繋ぎ目で滑らかにならない** 目的: 可展面近似を用いずに, 高精度に曲面形状を構成 ---- ### 平面材料の変形 : 面外と面内 ![](https://media.giphy.com/media/DBbgzDEBMRQ2lCDc1C/giphy.webp =220x) ![](https://media.giphy.com/media/3d4QFpCTnxbIVho19W/giphy.webp =220x) ![](https://media.giphy.com/media/1BcQS15okiYvn0CAqp/giphy.webp =220x) * 曲面の第一基本形式を * 面外変形: 保つ * 面内変形: 保たない * 通常の折り紙/紙工作では可展面のみを構成可能 * 面外変形: 可展面のみ構成可能 * 面内変形: 可展面以外も構成可能 ---- ### 紙の弾性的性質 具体例: 紙を捩って常螺旋面($K< 0$)が作れる 面外変形のみなら可展面($K=0$) ($K$:Gauss曲率) ![](https://i.imgur.com/zXgiJrL.jpg =600x) * 紙は面内方向にも変形可能. * [面外変形のエネルギー] $\ll$ [面内変形のエネルギー] ---- <!-- .slide: data-transition="none" --> ### 問題設定 1. 曲面を座標に沿って曲面片に分割 1. 平面材料から曲面に変形すると歪エネルギーが発生 1. エネルギー最小の形状を最も"自然"な展開形状とする ![](https://i.imgur.com/5BgYqyL.png =700x) ---- <!-- .slide: data-transition="none" --> ### 問題設定 1. **曲面を座標に沿って曲面片に分割** 1. 平面材料から曲面に変形すると歪エネルギーが発生 1. エネルギー最小の形状を最も"自然"な展開形状とする ![](https://i.imgur.com/exm3E7z.png =700x) ---- <!-- .slide: data-transition="none" --> ### 問題設定 1. 曲面を座標に沿って曲面片に分割 1. **平面材料から曲面に変形すると歪エネルギーが発生** 1. エネルギー最小の形状を最も"自然"な展開形状とする ![](https://i.imgur.com/mYuULoq.png =700x) ---- <!-- .slide: data-transition="none" --> ### 問題設定 1. 曲面を座標に沿って曲面片に分割 1. 平面材料から曲面に変形すると歪エネルギーが発生 1. **エネルギー最小の形状を最も"自然"な展開形状とする** ![](https://media.giphy.com/media/cPTAy4w4IFugabge1l/giphy.webp =700x) --- ### 目次 * はじめに * 研究目的/背景 * 問題設定 * **問題の定式化** * **弱形式定式化** * **IGAによる離散化** * 計算結果 * 懸垂面 * 常螺旋面 * おわりに * なぜ編み紙なのか * 結言 ---- ### 基準状態と現状態 * 基準状態 : 変形前で歪エネルギーが発生していない状態 * 現状態 : 変形後で歪エネルギーが発生している状態 ![](https://media.giphy.com/media/cPTAy4w4IFugabge1l/giphy.webp =350x) ![](https://media.giphy.com/media/8A7t5VLdWWfx1qYkkm/giphy.webp =350x) 「平面材料から曲面片へ変形させた際のエネルギー」と 「曲面片から平面への埋め込みで入るエネルギー」は ほぼ同じである. 以降では, 基準状態と現状態を入れ替えて定式化する. ---- ### Riemann多様体上の非線形弾性論 ![](https://media.giphy.com/media/8A7t5VLdWWfx1qYkkm/giphy.webp =420x) 材料に発生する歪エネルギー$W$は次の順で定式化される. * 基準状態$M_{[0]}$, 現状態$M_{[t]}$のRiemann計量 $g_{[0]}, g_{[t]}$ * Green歪テンソル $E=\frac{1}{2}(g_{[t]}-g_{[0]})$ * 歪エネルギー $W=\int_M \frac{1}{2}C(E,E)\upsilon_{[0]}$ 歪エネルギー$W$が極小となる はめ込み$M_{[0]}\to \mathbb{E}^2$を探す ---- ### 弱形式定式化$\newcommand\setN[0]{\mathbb{N}}\newcommand\setZ[0]{\mathbb{Z}}\newcommand\setQ[0]{\mathbb{Q}}\newcommand\setR[0]{\mathbb{R}}\newcommand\setC[0]{\mathbb{C}}\newcommand\pare[1]{{(#1)}}\newcommand\Pare[1]{\left(#1\right)}\newcommand\curl[1]{\{#1\}}\newcommand\Curl[1]{\left\{#1\right\}}\newcommand\squa[1]{[#1]}\newcommand\Squa[1]{\left[#1\right]}\newcommand\abs[1]{\lvert#1\rvert}\newcommand\Abs[1]{\left\lvert#1\right\rvert}\newcommand\floor[1]{\lfloor#1\rfloor}\newcommand\Floor[1]{\left\lfloor#1\right\rfloor}\newcommand\ceil[1]{\lceil#1\rceil}\newcommand\Ceil[1]{\left\lceil#1\right\rceil}\newcommand\angl[1]{\langle#1\rangle}\newcommand\Angl[1]{\left\langle#1\right\rangle}\newcommand\transpose[1]{\,{\vphantom{#1}}^t\!#1}\newcommand\sfrac[2]{#1/#2}\newcommand\od[2]{\frac{d#1}{d#2}}\newcommand\pd[2]{\frac{\partial#1}{\partial#2}}\newcommand\sod[2]{\sfrac{d#1}{d#2}}\newcommand\spd[2]{\sfrac{\partial#1}{\partial#2}}\DeclareMathOperator{\tr}{tr}\DeclareMathOperator{\Re}{Re}\DeclareMathOperator{\Im}{Im}\DeclareMathOperator{\supp}{supp}\DeclareMathOperator{\sgn}{sgn}\DeclareMathOperator{\Diff}{Diff}\DeclareMathOperator{\span}{span}$ ![](https://i.imgur.com/Ctl0mgs.png) 局所表示して変分法. 次を充たす対応$x_{[0]}\mapsto x_{[t]}$を求める \begin{align} &\scriptsize \int_M {{g_{[t]ij}\pd{w^i}{x_{[0]}^m}\pd{x_{[t]}^j}{x_{[0]}^n}\Pare{2\Pare{\alpha g_{[0]}^{mn}g_{[0]}^{kl}+\beta g_{[0]}^{mk}g_{[0]}^{nl}}\pd{x_{[t]}^p}{x_{[0]}^k}\pd{x_{[t]}^q}{x_{[0]}^l}g_{[t]pq}+\gamma g_{[0]}^{mn}}}}\upsilon_{[0]}=0 \\ &\scriptstyle \qquad \alpha=\sfrac{\lambda}{8}, \ \beta=\sfrac{\mu}{4}, \ \gamma=-\Pare{\lambda+\mu}/2, \ \delta=\Pare{\lambda+\mu}/2 \end{align} $\lambda, \mu$ : Lamé定数, $w^i$ : テスト関数 ---- ### IGAによる離散化$\newcommand\setN[0]{\mathbb{N}}\newcommand\setZ[0]{\mathbb{Z}}\newcommand\setQ[0]{\mathbb{Q}}\newcommand\setR[0]{\mathbb{R}}\newcommand\setC[0]{\mathbb{C}}\newcommand\pare[1]{{(#1)}}\newcommand\Pare[1]{\left(#1\right)}\newcommand\curl[1]{\{#1\}}\newcommand\Curl[1]{\left\{#1\right\}}\newcommand\squa[1]{[#1]}\newcommand\Squa[1]{\left[#1\right]}\newcommand\abs[1]{\lvert#1\rvert}\newcommand\Abs[1]{\left\lvert#1\right\rvert}\newcommand\floor[1]{\lfloor#1\rfloor}\newcommand\Floor[1]{\left\lfloor#1\right\rfloor}\newcommand\ceil[1]{\lceil#1\rceil}\newcommand\Ceil[1]{\left\lceil#1\right\rceil}\newcommand\angl[1]{\langle#1\rangle}\newcommand\Angl[1]{\left\langle#1\right\rangle}\newcommand\transpose[1]{\,{\vphantom{#1}}^t\!#1}\newcommand\sfrac[2]{#1/#2}\newcommand\od[2]{\frac{d#1}{d#2}}\newcommand\pd[2]{\frac{\partial#1}{\partial#2}}\newcommand\sod[2]{\sfrac{d#1}{d#2}}\newcommand\spd[2]{\sfrac{\partial#1}{\partial#2}}\DeclareMathOperator{\tr}{tr}\DeclareMathOperator{\Re}{Re}\DeclareMathOperator{\Im}{Im}\DeclareMathOperator{\supp}{supp}\DeclareMathOperator{\sgn}{sgn}\DeclareMathOperator{\Diff}{Diff}\DeclareMathOperator{\span}{span}$ ![](https://i.imgur.com/r4K1fUi.png) * 展開後の形状をNURBS多様体で近似(IGA) * 座標の対応$x_{[0]}\mapsto x_{[t]}$を$\tilde{x}_{[t]}^i=\xi_I^iN^I(x_{[0]})$で近似 * $N_I$がB-spline基底関数 $N_I\colon M_{[0]}\to\setR$ * 制御点の座標$(\xi_I^i\in\setR)$を変数として離散化 ---- ### 非線形連立方程式への帰着$\newcommand\setN[0]{\mathbb{N}}\newcommand\setZ[0]{\mathbb{Z}}\newcommand\setQ[0]{\mathbb{Q}}\newcommand\setR[0]{\mathbb{R}}\newcommand\setC[0]{\mathbb{C}}\newcommand\pare[1]{{(#1)}}\newcommand\Pare[1]{\left(#1\right)}\newcommand\curl[1]{\{#1\}}\newcommand\Curl[1]{\left\{#1\right\}}\newcommand\squa[1]{[#1]}\newcommand\Squa[1]{\left[#1\right]}\newcommand\abs[1]{\lvert#1\rvert}\newcommand\Abs[1]{\left\lvert#1\right\rvert}\newcommand\floor[1]{\lfloor#1\rfloor}\newcommand\Floor[1]{\left\lfloor#1\right\rfloor}\newcommand\ceil[1]{\lceil#1\rceil}\newcommand\Ceil[1]{\left\lceil#1\right\rceil}\newcommand\angl[1]{\langle#1\rangle}\newcommand\Angl[1]{\left\langle#1\right\rangle}\newcommand\transpose[1]{\,{\vphantom{#1}}^t\!#1}\newcommand\sfrac[2]{#1/#2}\newcommand\od[2]{\frac{d#1}{d#2}}\newcommand\pd[2]{\frac{\partial#1}{\partial#2}}\newcommand\sod[2]{\sfrac{d#1}{d#2}}\newcommand\spd[2]{\sfrac{\partial#1}{\partial#2}}\DeclareMathOperator{\tr}{tr}\DeclareMathOperator{\Re}{Re}\DeclareMathOperator{\Im}{Im}\DeclareMathOperator{\supp}{supp}\DeclareMathOperator{\sgn}{sgn}\DeclareMathOperator{\Diff}{Diff}\DeclareMathOperator{\span}{span}$ ![](https://i.imgur.com/r4K1fUi.png =700x) \begin{align}\scriptsize A_{ijpq}^{IJPQ}&\scriptsize =\!\int_M {{g_{[t]ij}\pd{N^I}{x_{[0]}^m}\pd{N^J}{x_{[0]}^n}\Pare{2\Pare{\alpha g_{[0]}^{mn}g_{[0]}^{kl}+\beta g_{[0]}^{mk}g_{[0]}^{nl}}\pd{N^P}{x_{[0]}^k}\pd{N^Q}{x_{[0]}^l}g_{[t]pq}}\upsilon_{[0]}}} \\ \scriptsize B_{ij}^{IJ}&\scriptsize =\gamma\int_M \Pare{{g_{[t]ij}\pd{N^I}{x_{[0]}^m}\pd{N^J}{x_{[0]}^n}g_{[0]}^{mn}}}\upsilon_{[0]}\\ &\hspace{4.5em} \scriptsize\xi_J^j\xi_P^p\xi_Q^q A_{ijpq}^{IJPQ}+\xi_J^jB_{ij}^{IJ} =0 \\ \end{align} 制御点の座標$\xi_I^i$をNewton法で近似的に求める ---- ### Newton法での初期値決定法 * Newton法は解の局所的な収束のみ保証 →初期値の決定が重要. 次から構成可能 * 測地的曲率 (中心曲線の展開後の曲線) * 第一基本量 (曲面片の幅) ![](https://i.imgur.com/8ZZdz6o.png =400x) ![](https://i.imgur.com/4M9iFWP.png =400x) --- ### 目次 * はじめに * 研究目的/背景 * 問題設定 * 問題の定式化 * 弱形式定式化 * IGAによる離散化 * **計算結果** * **懸垂面** * **常螺旋面** * おわりに * なぜ編み紙なのか * 結言 ---- ### 計算結果 (懸垂面) * 軸対称な極小曲面 ![](https://i.imgur.com/8trSuy2.png =220x) ![](https://i.imgur.com/MOktUhR.png =220x) ![](https://i.imgur.com/hbr5NPH.png =220x) ![](https://i.imgur.com/GlGxozy.png =220x) ![](https://i.imgur.com/YUgQ1GH.jpg =300x) ![](https://i.imgur.com/50JEWZc.jpg =300x) ---- ### 計算結果 (常螺旋面) * 正コノイドかつ極小曲面 ![](https://i.imgur.com/LfHGzcl.png =220x) ![](https://i.imgur.com/MOktUhR.png =220x) ![](https://i.imgur.com/kyOSEri.png =220x) ![](https://i.imgur.com/GlGxozy.png =220x) ---- ### 懸垂面 - 常螺旋面 * 第一基本形式が局所的に等しくなる, 有名な曲面の組 * 面外変形のみで互いに変形可能 ![](https://i.imgur.com/xvqz45P.png =300x) ![](https://i.imgur.com/pEcYIeg.png =300x) ![](https://i.giphy.com/media/8L0hVH1F6oqOHJZKbz/giphy.webp =300x) --- ### 目次 * はじめに * 研究目的/背景 * 問題設定 * 問題の定式化 * 弱形式定式化 * IGAによる離散化 * 計算結果 * 懸垂面 * 常螺旋面 * **おわりに** * **なぜ編み紙なのか** * **結言** ---- ### なぜ編み紙なのか * なぜ編み紙なのか * 2方向に曲面片を配置することで滑らかに近似可能 * 糊代の配置が不要 * 裏表の区別が無い * なぜエネルギー最小問題としたか * 可展面近似では編み紙の重なる部分の処理が困難 * 面外変形に非依存で展開可能 (可展面近似では面外変形に展開形状が依存) ![](https://i.imgur.com/r4K1fUi.png =433x) ![](https://i.imgur.com/hbr5NPH.png =130x) ![](https://i.imgur.com/GlGxozy.png =130x) ![](https://i.giphy.com/media/8L0hVH1F6oqOHJZKbz/giphy.webp =130x) ---- ### 結言 * 取り組んだ問題 * 曲面形状を紙で構成する際の展開形状最適化 * 提案手法の概要 * Riemann多様体上の非線形弾性論で定式化 * NURBS多様体で離散化 (IGA) * エネルギー極小となる制御点の決定 (Newton法) * 得られた結果 * 編み紙によって滑らかな曲面形状を構成した * 今後の課題 * 曲面片の分割数の評価・分割数の自動決定 --- ### Weaving a Torus with Villarceau Circles ![](https://c1.staticflickr.com/1/735/20858093862_52fc1d60de_b.jpg =455x) ![](https://c1.staticflickr.com/6/5757/20874822461_1955da2588_b.jpg =400x) Francesco de Comité(fdecomite)による編み紙トーラスの例 エネルギー最小問題を使わなかったため, 隙間が空いている <font size="3">(図は https://www.flickr.com/photos/fdecomite/20867353245/in/photostream/ より引用)</font>

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully