# Probability HW5 ###### tags: `Probability` ## 1 ### a 以下計算 $M_X(t)$ $$\begin{align} M_X(t) &= \int_{-\infty}^{\infty}e^{xt}f_X(x)\mathrm dx \\ &= \int_{-\infty}^{-1} e^{xt}(0)\mathrm dx + \int_{-1}^{3} e^{xt}\left(\frac 1 4\right)\mathrm dx + \int_{3}^{\infty} e^{xt}(0)\mathrm dx \\ &= 0 + \left[\frac{1}{4t}e^{xt}\right]_{-1}^{3} + 0 \\ &= \frac{e^{3t}-e^{-t}}{4t} \end{align}$$ ### b 已知 ${M_X}^{(k)}(0)=E[X^k]$ 。因此 * $E[X]={M_X}'(0)$ * $\text{Var}[X]=E[X^2]-E[X]={M_X}''(0)-{M_X}'(0)$ 以下計算 $E[X]$ $$\begin{align} E[X] &= {M_X}'(0) \\ &= \lim_{t\to0}\frac{\left(3e^{3t}+e^{-t}\right)(4t)-\left(e^{3t}-e^{-t}\right)(4)}{(4t)^2} \\ &= \lim_{t\to0}\frac{t\left(3e^{3t}+e^{-t}\right)-\left(e^{3t}-e^{-t}\right)}{4t^2} \\ &\stackrel{\text{H}}{=} \lim_{t\to0} \frac{\left(3e^{3t}+e^{-t}\right)+t\left(9e^{3t}-e^{-t}\right)-\left(3e^{3t}+e^{-t}\right)}{8t} \\ &= \lim_{t\to0} \frac{t\left(9e^{3t}-e^{-t}\right)}{8t} \\ &\stackrel{\text{H}}{=} \lim_{t\to0} \frac{\left(9e^{3t}-e^{-t}\right) + t\left(27e^{3t}+e^{-t}\right)}{8} \\ &= 1 \end{align}$$ 以下計算 $\text{Var}[X]$ $$\begin{align} \text{Var}[X] &= {M_X}''(0)-{M_X}'(0) \\ &= \lim_{t\to0}\dfrac{\left(9t^2-6t+2\right)\mathrm{e}^{4t}-t^2-2t-2}{4t^3e^t} -1 \\ &\stackrel{\text{H}}{=} \lim_{t\to0} \frac{\left(36t^2-6t+2\right)e^{4t}-2t-2}{4e^t\left(3t^2+t^3\right)} -1 \\ &\stackrel{\text{H}}{=} \lim_{t\to0} \frac{\left(144t^2+48t+2\right)e^{4t}-2}{4e^t\left(6t+6t^2+t^3\right)} -1 \\ &\stackrel{\text{H}}{=} \lim_{t\to0} \frac{\left(576t^2+488t+56\right)e^{4t}}{4e^t\left(6+18t+9t^2+t^3\right)} -1 \\ &= \frac 4 3 \end{align}$$ ## 2 ### a 顯然這是 $n=7, p=0.75$ 的 Binomial distribution 。因此 $$\Pr(X=x)=\begin{equation}\begin{cases} \displaystyle\binom{7}{x}\left(\frac 3 4\right)^x\left(\frac 1 4\right)^{7-x}, & \text{if}~x\in\{0,1,2,3,4,5,6,7\} \\ \\ 0, & \text{else} \end{cases}\end{equation}$$ ### b 顯然這是 Geometric distribution 。解 $$\frac{pe^x}{1-(1-p)e^x}=\frac{e^x}{2-e^x}$$ 得到 $p=0.5$ ,因此 $$\Pr(X=x)=\begin{equation}\begin{cases} 2^{-x}, & \text{if}~x \in \mathbb N \\ 0, & \text{else} \end{cases}\end{equation}$$ ### c 顯然這是 $\lambda=3$ 的 Poisson distribution 。因此 $$\Pr(X=x)=\begin{equation}\begin{cases} \dfrac{3^x}{x!e^3}, & \text{if}~x \in \mathbb N ~\text{or}~ x=0 \\ \\ 0, & \text{else} \end{cases}\end{equation}$$ ## 3 ### a 已知 $$f_{X_1}(x)=f_{X_2}(x)=\begin{equation}\begin{cases} 0.5, & \text{if}~x\in[0,2] \\ 0, & \text{else} \end{cases}\end{equation}$$ 可以推導出 $$f_{X_1}(t-x)=\begin{equation}\begin{cases} 0.5, & \text{if}~x\in[t-2,t] \\ 0, & \text{else} \end{cases}\end{equation}$$ 因此 * 當 $x<0$ 時 $f_{X_1+X_2}(t)=\displaystyle\int_{-\infty}^0 0^2~\mathrm dx =0$ * 當 $x\in[0,2]$ 時 $f_{X_1+X_2}(t)=\displaystyle\int_0^t 0.5^2~\mathrm dx = \dfrac t 4$ * 當 $x\in[2,4]$ 時 $f_{X_1+X_2}(t)=\displaystyle\int_t^4 0.5^2~\mathrm dx =1-\dfrac t 4$ * 當 $x>4$ 時 $f_{X_1+X_2}(t)=\displaystyle\int_{4}^\infty 0^2~\mathrm dx =0$ 答案為 $$f_{X_1+X_2}(t) = \begin{cases} \dfrac t 4, & \text{if}~t\in[0,2]\\ 1-\dfrac t 4, & \text{if}~t\in[2,4]\\ 0, &\text{else} \end{cases}$$ ### b 已知 $Z=3Y_1+4Y_2=\mathcal N(3\mu_{Y_1}+4\mu_{Y_2}, 3^2{\sigma_{Y_1}}^2+4^2{\sigma_{Y_2}}^2)=\mathcal N(19,180)$ 。 因此 $$\begin{align}\Pr(Z>20) &= 1-\frac 1 2\left(1+\text{erf}\left(\frac{20-19}{\sqrt {180} \sqrt {2}}\right)\right) \\ &= 1-\frac 1 2\left(1+\text{erf}\left(\frac{1}{\sqrt{360}}\right)\right) \\ &\approx 0.47029 \end{align}$$ ## 4 ### a 已知 $$\begin{align}\Pr(X>\pi\mu) &= \Pr(X-\mu>(\pi-1)\mu) \\ &\leq \Pr(|X-\mu|>(\pi-1)\mu) \\ &\leq \frac{\mu}{((\pi-1)\mu)^2} \\ &= \frac{1}{(\pi-1)^2\mu} \end{align}$$ 所以 $$\Pr(X>\pi\mu) \leq \frac{1}{(\pi-1)^2\mu}$$ ### b 令 $H(n)$ 表示執行 $n$ 次演算法正確的次數。根據 Hoeffding's inequality 若 $a\in[0,1]$ ,則有 $$\Pr(H(n)\leq (p-a)n) \leq \exp(-2a^2n)$$ 在此例中 $p=0.5+\delta$ ,並且若 $H(n)\leq n/2$ 則預測失敗。解 $(p-a)n=n/2$ 得到 $a=\delta$ 。故預測失敗的機率為 $$\Pr\left(H(n)\leq \frac n 2\right) \leq \exp\left(-2\delta^2n\right)$$ 當 $n\geq (1/2)\delta^{-2}\ln(\varepsilon^{-1})$ 時,預測失敗的機率將為 $$\begin{align} \Pr\left(H(n)\leq \frac n 2\right) &\leq \exp\left(-2\delta^2n\right) \\ &\leq \exp\left(-2\delta^2\frac 1 {2\delta^2}\ln\left(\frac 1 \varepsilon\right)\right) \\ &= \varepsilon \end{align}$$ 故得知失敗機率至多為 $\varepsilon$ ,亦即預測成功機率至少為 $1-\varepsilon$ 。 Q.E.D 。 ## 5 ### a 已知 $f_{X_i}(x)\leq1$ ,因此 $$\begin{align} E[\exp(-tX_i)] &= \int_{-\infty}^{\infty}e^{-tx}\cdot f_{X_i}(x)\mathrm dx \\ &\leq \int_{-\infty}^{\infty}e^{-tx}\cdot 1\mathrm dx \\ &= \frac 1 t \end{align}$$ ### b I don't know.