Try   HackMD

Term Project: Improve RISC-V System Emulation of semu

contributed by < hungyuhang, RayChen >

Introduction

System emulation provides a virtual model of a machine (CPU, memory and emulated devices) to run a guest OS. In integrated circuit (IC) design, system emulation plays a significant role during the initial design phase of the chip.

And among those system emulators, semu is a minimalist RISC-V system emulator capable of running Linux the kernel and corresponding userland. But as the term "minimalist" implies, semu does not include some essential peripherals, such as the RTC module.

To improve the system emulation of semu, we add a simple RTC module. The implementations are in the following repositories:

For repository hungyuhang/semu, the code is implemented in the rtc_feature branch.

And the precompiled image of our custom Linux is provided below:


Implementation

We choose LupIO real-time clock (RTC) as the RTC module to emulate, since it is easy for software/hardware adaptation because there are already implementations of the LupIO RTC in lupV and lupio/linux.

Hardware

1. Real-time Clock Device

We chose to port the real-time clock to semu due to its limited functions, minimizing dependencies and reducing the likelihood of encountering bugs during the porting process.

lupV Implementation - rtc.c

Below is the code for the real-time clock(RTC) in lupV:

#include <assert.h>
#include <inttypes.h>
#include <time.h>

#include <devices/rtc.h>
#define DBG_ITEM DBG_RTC
#include <lib/debug.h>
#include <platform/iomem.h>

/*
 * Frontend: LupIO-RTC virtual device implementation
 */
enum {
    LUPIO_RTC_SECD  = 0x0,
    LUPIO_RTC_MINT,
    LUPIO_RTC_HOUR,
    LUPIO_RTC_DYMO,
    LUPIO_RTC_MNTH,
    LUPIO_RTC_YEAR,
    LUPIO_RTC_CENT,
    LUPIO_RTC_DYWK,
    LUPIO_RTC_DYYR,

    /* Top offset in register map */
    LUPIO_RTC_OFFSET_MAX,
};

static uint64_t lupio_rtc_read(void *dev, phys_addr_t offset,
                               enum iomem_size_log2 size_log2)
{
    uint32_t val = 0;
    time_t time_sec;
    struct tm time_bd;
    char buffer[256];

    /* Get real time  in seconds */
    time_sec = time(NULL);
    /* Break down time representation */
    gmtime_r(&time_sec, &time_bd);

    strftime(buffer, 256, "%c", &time_bd);
    dbg_more("%s: read time = %s", __func__, buffer);

    switch(offset) {
        case LUPIO_RTC_SECD:
            val = time_bd.tm_sec;                 /* 0-60 (for leap seconds) */
            break;
        case LUPIO_RTC_MINT:
            val = time_bd.tm_min;                 /* 0-59 */
            break;
        case LUPIO_RTC_HOUR:
            val = time_bd.tm_hour;                /* 0-23 */
            break;
        case LUPIO_RTC_DYMO:
            val = time_bd.tm_mday;                /* 1-31 */
            break;
        case LUPIO_RTC_MNTH:
            val = time_bd.tm_mon + 1;             /* 1-12 */
            break;
        case LUPIO_RTC_YEAR:
            val = (time_bd.tm_year + 1900) % 100; /* 0-99 */
            break;
        case LUPIO_RTC_CENT:
            val = (time_bd.tm_year + 1900) / 100; /* 0-99 */
            break;
        case LUPIO_RTC_DYWK:
            val = 1 + (time_bd.tm_wday + 6) % 7;  /* 1-7 (Monday is 1) */
            break;
        case LUPIO_RTC_DYYR:
            val = time_bd.tm_yday + 1;            /* 1-366 (for leap years) */
            break;

        default:
            dbg_core("%s: invalid read access at offset=0x%" PRIxpa,
                     __func__, offset);
            break;
    }

    return val;
}

static void lupio_rtc_write(void *dev, phys_addr_t offset, uint64_t val,
                            enum iomem_size_log2 size_log2)
{
    dbg_core("%s: invalid write access at offset=0x%" PRIxpa, __func__, offset);
}

static struct iomem_dev_ops lupio_rtc_ops = {
    .read = lupio_rtc_read,
    .write = lupio_rtc_write,
    .flags = IOMEM_DEV_SIZE8,
};

void lupio_rtc_init(phys_addr_t base, phys_addr_t size)
{
    assert(size >= LUPIO_RTC_OFFSET_MAX);

    iomem_register_device(base, size, NULL, &lupio_rtc_ops);
}

semu Implementation - rtc.c

To align with the architecture of semu, we have designated lupio_rtc_read as the entry point, with the implementation details housed in lupio_rtc_reg_read. In this document, the register size is specified as 8 bits, thus the entry point's width is set to RV_MEM_LBU. Below is the implementation of the lupio_rtc_read function in semu.

void lupio_rtc_read(vm_t *vm,
                    rtc_states *rtcState,
                    uint32_t addr,
                    uint8_t width,
                    uint32_t *value)
{
    uint8_t u8value;
    int32_t i32value;
    switch (width) {
    case RV_MEM_LBU:
        lupio_rtc_reg_read(rtcState, addr, &u8value);
        *value = (uint32_t) u8value;
        break;
    case RV_MEM_LB:
        lupio_rtc_reg_read(rtcState, addr, &u8value);
        i32value = (int32_t) (*((int8_t *) &u8value)); // do sign-extension
        *value = *((uint32_t *) &i32value);
        break;
    case RV_MEM_LW:
    case RV_MEM_LHU:
    case RV_MEM_LH:
        vm_set_exception(vm, RV_EXC_LOAD_MISALIGN, vm->exc_val);
        return;
    default:
        vm_set_exception(vm, RV_EXC_ILLEGAL_INSTR, 0);
        return;
    }
}

uint64_t lupio_rtc_reg_read(rtc_states *rtcState, 
                            uint32_t offset, 
                            uint8_t *value)
{
    // uint32_t val = 0;
    time_t time_sec;
    struct tm time_bd;
    char buffer[256];

    /* Get real time  in seconds */
    time_sec = time(NULL);
    /* Break down time representation */
    gmtime_r(&time_sec, &time_bd);

    strftime(buffer, 256, "%c", &time_bd);
    // dbg_more("%s: read time = %s", __func__, buffer);


    switch(offset) {
        case LUPIO_RTC_SECD:
            *value = time_bd.tm_sec;                 /* 0-60 (for leap seconds) */
            return true;
        case LUPIO_RTC_MINT:
            *value = time_bd.tm_min;                 /* 0-59 */
            return true;
        case LUPIO_RTC_HOUR:
            *value = time_bd.tm_hour;                /* 0-23 */
            return true;
        case LUPIO_RTC_DYMO:
            *value = time_bd.tm_mday;                /* 1-31 */
            return true;
        case LUPIO_RTC_MNTH:
            *value = time_bd.tm_mon + 1;             /* 1-12 */
            return true;
        case LUPIO_RTC_YEAR:
            *value = (time_bd.tm_year + 1900) % 100; /* 0-99 */
            return true;
        case LUPIO_RTC_CENT:
            *value = (time_bd.tm_year + 1900) / 100; /* 0-99 */
            return true;
        case LUPIO_RTC_DYWK:
            *value = 1 + (time_bd.tm_wday + 6) % 7;  /* 1-7 (Monday is 1) */
            return true;
        case LUPIO_RTC_DYYR:
            *value = time_bd.tm_yday + 1;            /* 1-366 (for leap years) */
            return true;

        default:
            printf("%d: invalid read access at offset = " , offset);
            return true;
    }

    return true;
}

The modification to lupio_rtc_write involves adding the entry point lupio_rtc_write, while the implementation remains printing text in the original lupV code. Therefore, in semu, we opted to return void.The lupio_rtc_write code is as follows:

void lupio_rtc_write(vm_t *vm,
                    rtc_states *rtcState,
                    uint32_t addr,
                    uint8_t width,
                    uint32_t value)
{
    switch (width) {
    case RV_MEM_SB:
        lupio_rtc_reg_write(rtcState, addr, value);
        return;
    case RV_MEM_SW:
    case RV_MEM_SH:
        vm_set_exception(vm, RV_EXC_STORE_MISALIGN, vm->exc_val);
        return;
    default:
        vm_set_exception(vm, RV_EXC_ILLEGAL_INSTR, 0);
        return;
    }
}

void lupio_rtc_reg_write(rtc_states *rtcState, 
                            uint32_t offset, 
                            uint8_t value)
{
    return;
}

semu Implementation - main.c

main.c file has four sections that need to be modified, including interrupt handling and memory read/write. The code is as follows:

static void emu_update_rtc_interrupts(vm_t *vm)
{
    emu_state_t *data = (emu_state_t *) vm->priv;
    if (data->lrtc.InterruptStatus)
        data->plic.active |= IRQ_RTC_BIT;
    else
        data->plic.active &= ~IRQ_RTC_BIT;
    plic_update_interrupts(vm, &data->plic);
}
static void mem_load(vm_t *vm, uint32_t addr, uint8_t width, uint32_t *value)
{
    ...
    ...
        case 0x43: /* rtc */
            lupio_rtc_read(vm, &data->lrtc, addr & 0xFFFFF, width, value);
            emu_update_rtc_interrupts(vm);
            return;
    ...
    ...
}
static void mem_store(vm_t *vm, uint32_t addr, uint8_t width, uint32_t value)
{
    ...
    ...
        case 0x43: /* realtime-clock */
            lupio_rtc_write(vm, &data->lrtc, addr & 0xFFFFF, width, value);
            emu_update_rtc_interrupts(vm);
            return;
    ...
    ...
}
static int semu_start(int argc, char **argv)
{
    ...
    ...
    if (emu.lrtc.InterruptStatus)
        emu_update_rtc_interrupts(&vm);
    ...
    ...
}

2. Device Tree

lupV Implementation - machine.c

In lupV, the dynamic generation of the device tree is implemented by generate_dtb function as shown below:

static void generate_dtb(uint8_t *dst, phys_addr_t kernel_entry)
{
    fdt_t fdt;
    enum {
        CPU_PHANDLE = 1,
        CLK_PHANDLE,
        PIC_PHANDLE,
        SYS_PHANDLE,
    };
    int size;

    /* Build FDT */
    fdt = fdt_create();
    ...
    ...
    /* /soc/rtc@0x... */
    fdt_begin_node_num(fdt, "rtc", memmap[RTC].base);
    fdt_prop_str(fdt, "compatible", "lupio,rtc");
    fdt_prop_u64n(fdt, "reg", 2, memmap[RTC].base, memmap[RTC].size);
    fdt_end_node(fdt); /* } /soc/rtc */
    ...
    ...
}

semu Implementation - minimal.dts

In semu, we write a DTS (Device Tree Source) file, and the code is as follows:

{
    ...
    ...
    rtc@4300000 {
        compatible = "lupio,rtc";
        reg = <0x4300000 0x1000>;
        interrupts = <4>;
    };
    ...
    ...
}

Softwate

1. Building the Linux Kernel with Custom RTC Driver

For Linux to use the RTC module we implemented, we need to add a corresponding driver into the Linux kernel.

In order to add the custom RTC driver, I create a custom Linux source code repository linux_for_semu, and replace the Linux repository in build-image.sh by linux_for_semu. This script will run when using $ make build-image to build the image.

In linux_for_semu, I apply the following modifications to add the RTC module:

  1. Create a directory lupio inside drivers(which is in the Linux source code) for the RTC driver and put rtc.c inside this directory.
  2. Create one Makefile inside the directory drivers/lupio and inside it put the line obj-$(CONFIG_LUPIO_RTC) += rtc.o and save this file.
  3. Create one Kconfig file inside the directory drivers/lupio and inside it put:
    ​​​​if LUPIO
    
    ​​​​config LUPIO_RTC
    ​​​​    tristate "LupIO-rtc driver"
    ​​​​    depends on LUPIO
    ​​​​    select RTC_CLASS
    ​​​​    help
    ​​​​      This driver supports a simple real-time clock (RTC) virtual device.
    
    ​​​​endif
    
  4. Save the file in step 3.
  5. Add both Makefile and Kconfig file in the Linux source drivers Makefile and Kconfig file which are at drivers/Makefile and drivers/Kconfig
  6. In the Makefile add below:
    obj-$(CONFIG_LUPIO) += lupio/
  7. In Kconfig file add below:
    source "drivers/lupio/Kconfig"
  8. In arch/riscv/Kconfig.socs add below:
    ​​​​config SOC_LUPV
    ​​​​    bool "LupV Machine"
    ​​​​    select POWER_RESET
    ​​​​    select POWER_RESET_SYSCON
    ​​​​    select POWER_RESET_SYSCON_POWEROFF
    ​​​​    select LUPIO
    ​​​​    select LUPIO_RTC
    ​​​​    help
    ​​​​      This enables support for LupV Machine.
    
  9. Finally in linux.config, which is in the semu repository, modify the settings below:
    ​​​​...
    ​​​​CONFIG_SOC_LUPV=y
    ​​​​...
    ​​​​CONFIG_RTC_LIB=y
    ​​​​CONFIG_RTC_CLASS=y
    ​​​​CONFIG_RTC_HCTOSYS=y
    ​​​​CONFIG_RTC_HCTOSYS_DEVICE="rtc0"
    ​​​​CONFIG_RTC_SYSTOHC=y
    ​​​​CONFIG_RTC_SYSTOHC_DEVICE="rtc0"
    ​​​​# CONFIG_RTC_DEBUG is not set
    ​​​​CONFIG_RTC_NVMEM=y
    
    ​​​​#
    ​​​​# RTC interfaces
    ​​​​#
    ​​​​CONFIG_RTC_INTF_SYSFS=y
    ​​​​CONFIG_RTC_INTF_PROC=y
    ​​​​CONFIG_RTC_INTF_DEV=y
    ​​​​...
    ​​​​CONFIG_LUPIO=y
    ​​​​CONFIG_LUPIO_RTC=y
    ​​​​...
    

2. Check if Linux Kernel Can Use RTC Module

We will use date command to validate the RTC module.

Use $ date to read the current time.
Use $ date YYYY.MM.DD-hh:mm:ss to write the time.

Since writing data to RTC module is not implemented, we will only test read time function.

When using the date command on lupV, the system returns the current time:

# date
Wed Jan 10 11:31:33 UTC 2024

But when using the date command on the original semu, the system only returns the default time:

# date
Thu Jan  1 00:00:12 UTC 1970

Issues Encountered

After writing the RTC code, we run the emulator, but the emulator did not run properly.
Below is the error message:

hungyuhang@hungyuhang-VirtualBox:~/semu$ make check
600+0 records in
600+0 records out
2457600 bytes (2.5 MB, 2.3 MiB) copied, 0.00384572 s, 639 MB/s
mke2fs 1.46.5 (30-Dec-2021)

Filesystem too small for a journal
Discarding device blocks: done                            
Creating filesystem with 600 4k blocks and 304 inodes

Allocating group tables: done                            
Writing inode tables: done                            
Writing superblocks and filesystem accounting information: done

Ready to launch Linux kernel. Please be patient.
failed to allocate TAP device: Operation not permitted
No virtio-net functioned
[    0.000000] Linux version 6.1.71-g1db6e9ae68da (hungyuhang@hungyuhang-VirtualBox) (riscv32-buildroot-linux-gnu-gcc.br_real (Buildroot 2023.05.1) 12.3.0, GNU ld (GNU Binutils) 2.39) #1 Thu Jan 11 15:21:01 CST 2024
[    0.000000] Machine model: semu
[    0.000000] earlycon: ns16550 at MMIO 0xf4000000 (options '')
[    0.000000] printk: bootconsole [ns16550] enabled
[    0.000000] Zone ranges:
[    0.000000]   Normal   [mem 0x0000000000000000-0x000000001fffffff]
[    0.000000] Movable zone start for each node
[    0.000000] Early memory node ranges
[    0.000000]   node   0: [mem 0x0000000000000000-0x000000001fffffff]
[    0.000000] Initmem setup node 0 [mem 0x0000000000000000-0x000000001fffffff]
[    0.000000] SBI specification v0.3 detected
[    0.000000] SBI implementation ID=0x999 Version=0x1
[    0.000000] SBI TIME extension detected
[    0.000000] SBI SRST extension detected
[    0.000000] riscv: base ISA extensions ai
[    0.000000] riscv: ELF capabilities aim
[    0.000000] Built 1 zonelists, mobility grouping on.  Total pages: 130048
[    0.000000] Kernel command line: earlycon console=ttyS0
[    0.000000] Dentry cache hash table entries: 65536 (order: 6, 262144 bytes, linear)
[    0.000000] Inode-cache hash table entries: 32768 (order: 5, 131072 bytes, linear)
[    0.000000] mem auto-init: stack:off, heap alloc:off, heap free:off
[    0.000000] Memory: 506884K/524288K available (3221K kernel code, 332K rwdata, 827K rodata, 158K init, 136K bss, 17404K reserved, 0K cma-reserved)
[    0.000000] SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=1, Nodes=1
[    0.000000] NR_IRQS: 64, nr_irqs: 64, preallocated irqs: 0
[    0.000000] riscv-intc: 32 local interrupts mapped
[    0.000000] plic: interrupt-controller@0: mapped 31 interrupts with 1 handlers for 1 contexts.
[    0.000000] riscv-timer: riscv_timer_init_dt: Registering clocksource cpuid [0] hartid [0]
[    0.000000] clocksource: riscv_clocksource: mask: 0xffffffffffffffff max_cycles: 0xefdb196da, max_idle_ns: 440795204367 ns
[    0.000006] sched_clock: 64 bits at 65MHz, resolution 15ns, wraps every 2199023255550ns
[    0.001242] Console: colour dummy device 80x25
[    0.001509] Calibrating delay loop (skipped), value calculated using timer frequency.. 130.00 BogoMIPS (lpj=260000)
[    0.001813] pid_max: default: 32768 minimum: 301
[    0.003071] Mount-cache hash table entries: 1024 (order: 0, 4096 bytes, linear)
[    0.003333] Mountpoint-cache hash table entries: 1024 (order: 0, 4096 bytes, linear)
[    0.009246] ASID allocator disabled (0 bits)
[    0.011333] devtmpfs: initialized
[    0.017629] clocksource: jiffies: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns: 7645041785100000 ns
[    0.017930] futex hash table entries: 256 (order: -1, 3072 bytes, linear)
[    0.027105] NET: Registered PF_NETLINK/PF_ROUTE protocol family
[    0.032324] platform soc: Fixed dependency cycle(s) with /soc/interrupt-controller@0
[    0.059010] clocksource: Switched to clocksource riscv_clocksource
[    0.118973] NET: Registered PF_INET protocol famil
[    0.121172] IP idents hash table entries: 8192 (order: 4, 65536 bytes, linear)
[    0.143229] tcp_listen_portaddr_hash hash table entries: 1024 (order: 0, 4096 bytes, linear)
[    0.143664] Table-perturb hash table entries: 65536 (order: 6, 262144 bytes, linear)
[    0.143950] TCP established hash table entries: 4096 (order: 2, 16384 bytes, linear)
[    0.144766] TCP bind hash table entries: 4096 (order: 3, 32768 bytes, linear)
[    0.145692] TCP: Hash tables configured (established 4096 bind 4096)
[    0.146194] UDP hash table entries: 256 (order: 0, 4096 bytes, linear)
[    0.146508] UDP-Lite hash table entries: 256 (order: 0, 4096 bytes, linear)
[    0.147710] NET: Registered PF_UNIX/PF_LOCAL protocol family
[    0.152664] Unpacking initramfs...
[    0.187390] workingset: timestamp_bits=30 max_order=17 bucket_order=0
[    3.045763] Freeing initrd memory: 8188K
[    3.114188] Serial: 8250/16550 driver, 4 ports, IRQ sharing disabled
[    3.122704] printk: console [ttyS0] disabled
[    3.123089] f4000000.serial: ttyS0 at MMIO 0xf4000000 (irq = 1, base_baud = 312500) is a 16550
[    3.123435] printk: console [ttyS0] enabled
[    3.123435] printk: console [ttyS0] enabled
[    3.123734] printk: bootconsole [ns16550] disabled
[    3.123734] printk: bootconsole [ns16550] disabled
[    3.126348] Oops - Oops - load address misaligned [#1]
[    3.126576] Modules linked in:
[    3.126756] CPU: 0 PID: 1 Comm: swapper Not tainted 6.1.71-g1db6e9ae68da #1
[    3.127094] Hardware name: semu (DT)
[    3.127270] epc : lupio_rtc_read_time+0x14/0xf8
[    3.127552]  ra : __rtc_read_time+0x5c/0xa4
[    3.127828] epc : c01f549c ra : c021a9d0 sp : c0861c50
[    3.128100]  gp : c046ff78 tp : c0844000 t0 : c0861cbc
[    3.128372]  t1 : 00000023 t2 : ae000000 s0 : c0861c60
[    3.128637]  s1 : c08b2000 a0 : c083b210 a1 : c0861c98
[    3.128909]  a2 : 00000000 a3 : c0861cbc a4 : 0000005c
[    3.129164]  a5 : a4001000 a6 : 00000030 a7 : 00000020
[    3.129422]  s2 : c0861c98 s3 : c08b2000 s4 : c08b20fc
[    3.129694]  s5 : 00000000 s6 : c09953f4 s7 : c034782c
[    3.129956]  s8 : 00000008 s9 : c03267b4 s10: 00000000
[    3.130209]  s11: 00000000 t3 : 91922286 t4 : 4199e48b
[    3.130471]  t5 : 673ae5a1 t6 : c0a710ab
[    3.130686] status: 00000120 badaddr: a4001000 cause: 00000004
[    3.130965] [<c01f549c>] lupio_rtc_read_time+0x14/0xf8
[    3.131363] ---[ end trace 0000000000000000 ]---
[    3.131583] Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b
[    3.131901] ---[ end Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b ]---

From the message above, we can see that the emulator issues a Load address misaligned error. And the instruction which causes the issue is at address 0xc01f549c

To check the issue, I use the following command to dump the disassembly of the Linux image:

$ export PATH="path/to/buildroot/output/host/bin:$PATH"
$ iscv32-buildroot-linux-gnu-objdump -b binary -D Image -m riscv > image_objdump.txt

path/to/buildroot is the directory of the toolchain which builds the Linux kernel.

In the disassembly code, there is no address 0xc01f549c, but the instruction at 0x1f549c is the compiled instruction in function lupio_rtc_read_time(). So I assumed that 0x1f549c is the address that epc stored.

And below are the instructions around 0x1f549c:

  ...
  1f5488:	ff010113          	addi	sp,sp,-16
  1f548c:	00812623          	sw	s0,12(sp)
  1f5490:	01010413          	addi	s0,sp,16
  1f5494:	04052783          	lw	a5,64(a0)
  1f5498:	0007a783          	lw	a5,0(a5)
  1f549c:	00078703          	lb	a4,0(a5)
  1f54a0:	0ff77713          	zext.b	a4,a4
  1f54a4:	08a0000f          	fence	i,ir
  1f54a8:	00e5a023          	sw	a4,0(a1) # 0xa00000
  1f54ac:	00178713          	addi	a4,a5,1
  1f54b0:	00070703          	lb	a4,0(a4)
  1f54b4:	0ff77713          	zext.b	a4,a4
  1f54b8:	08a0000f          	fence	i,ir
  ...

From the disassembly, we can see that 0x1f549c is a lb instruction. And this instruction causes the exception.

By tracing the code of semu, we find the root cause.
Below is the original code of lupio_rtc_read() in rtc.c:

void lupio_rtc_read(vm_t *vm,
                    rtc_states *rtcState,
                    uint32_t addr,
                    uint8_t width,
                    uint32_t *value)
{
    uint8_t u8value;
    switch (width) {
    case RV_MEM_LW:
    case RV_MEM_LBU:
        lupio_rtc_reg_read(rtcState, addr, &u8value);
        *value = (uint32_t) u8value;
        break;
    case RV_MEM_LB:
    case RV_MEM_LHU:
    case RV_MEM_LH:
        vm_set_exception(vm, RV_EXC_LOAD_MISALIGN, vm->exc_val);
        return;
    default:
        vm_set_exception(vm, RV_EXC_ILLEGAL_INSTR, 0);
        return;
    }
}

We can see when using lb instruction to access the RTC module, the width variable in the code above will equals to RV_MEM_LB, which will cause an exception.

And here is the code after modification:

void lupio_rtc_read(vm_t *vm,
                    rtc_states *rtcState,
                    uint32_t addr,
                    uint8_t width,
                    uint32_t *value)
{
    uint8_t u8value;
    int32_t i32value;
    switch (width) {
    case RV_MEM_LBU:
        lupio_rtc_reg_read(rtcState, addr, &u8value);
        *value = (uint32_t) u8value;
        break;
    case RV_MEM_LB:
        lupio_rtc_reg_read(rtcState, addr, &u8value);
        i32value = (int32_t) (*((int8_t *) &u8value)); // do sign-extension
        *value = *((uint32_t *) &i32value);
        break;
    case RV_MEM_LW:
    case RV_MEM_LHU:
    case RV_MEM_LH:
        vm_set_exception(vm, RV_EXC_LOAD_MISALIGN, vm->exc_val);
        return;
    default:
        vm_set_exception(vm, RV_EXC_ILLEGAL_INSTR, 0);
        return;
    }
}

After this modification, the RTC emulation code can handle both lb and lbu instruction access.


Result

After solving the issue above, I run the date command to check the time, and below is the result:

# date
Sat Jan 13 03:11:39 UTC 2024

The Linux OS get the date from the RTC module successfully.

If you want run hungyuhang/semu to see the result, you can simply run the same commands as the original semu($ make and $ make check). The Makefile script will download the correct prebuild Linux image file with the RTC driver in it.


Reference