---
tags: leetcode
---
# [144. Binary Tree Preorder Traversal](https://leetcode.com/problems/binary-tree-preorder-traversal/)
---
# My Solution
## Solution 1: DFS (recursion)
### The Key Idea for Solving This Coding Question
### C++ Code
```cpp=
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> preorderTraversal(TreeNode *root) {
dfs(root);
return preorder;
}
private:
vector<int> preorder;
void dfs(TreeNode *root) {
if (root == nullptr) {
return;
}
preorder.push_back(root->val);
dfs(root->left);
dfs(root->right);
}
};
```
### Time Complexity
$O(n)$
$n$ is the number of nodes in the binary tree.
### Space Complexity
$O(H)$
$H$ is the height of the binary tree.
## Solution 2: DFS (iteration, stack)
### The Key Idea for Solving This Coding Question
### C++ Code 1
```cpp=
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> preorderTraversal(TreeNode *root) {
stack<TreeNode *> st;
vector<int> preorder;
while (!st.empty() || root != nullptr) {
if (root != nullptr) {
st.push(root);
preorder.push_back(root->val);
root = root->left;
} else {
root = st.top();
st.pop();
root = root->right;
}
}
return preorder;
}
};
```
### C++ Code 2
```cpp=
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> preorderTraversal(TreeNode *root) {
if (root == nullptr) {
return {};
}
stack<TreeNode *> st;
vector<int> preorder;
st.push(root);
while (!st.empty()) {
TreeNode *node = st.top();
st.pop();
preorder.push_back(node->val);
if (node->right != nullptr) {
st.push(node->right);
}
if (node->left != nullptr) {
st.push(node->left);
}
}
return preorder;
}
};
```
### Time Complexity
$O(n)$
$n$ is the number of nodes in the binary tree.
### Space Complexity
$O(H)$
$H$ is the height of the binary tree.
## Solution 3: Morris Traversal
### The Key Idea for Solving This Coding Question
### C++ Code
```cpp=
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> preorderTraversal(TreeNode *root) {
vector<int> preorder;
while (root != nullptr) {
if (root->left == nullptr) {
preorder.push_back(root->val);
root = root->right;
} else {
TreeNode *pre = root->left;
while (pre->right != nullptr && pre->right != root) {
pre = pre->right;
}
if (pre->right == nullptr) {
preorder.push_back(root->val);
pre->right = root;
root = root->left;
} else {
pre->right = nullptr;
root = root->right;
}
}
}
return preorder;
}
};
```
### Time Complexity
$O(n)$
$n$ is the number of nodes in the binary tree.
### Space Complexity
$O(1)$
# Miscellaneous
[94. Binary Tree Inorder Traversal](https://leetcode.com/problems/binary-tree-inorder-traversal)
[145. Binary Tree Postorder Traversal](https://leetcode.com/problems/binary-tree-postorder-traversal)
<!--
# Test Case
```
[1,null,2,3]
```
```
[]
```
```
[1]
```
```
[4,2,7,1,3]
```
```
[18,2,22,null,null,null,63,null,84,null,null]
```
```
[18,6,22,5,7,11,63,1,2,9,8,10,24,12,84]
```
```
[1,2,3]
```
```
[4,2,1,3,7]
```
```
[18,2,22,63,84]
```
```
[18,6,5,1,2,7,9,8,22,11,10,24,63,12,84]
```
-->