# 2020-04-10 Fundamental Concept III [video](https://www.youtube.com/watch?v=cNXxtyS2t_0&list=PL8xY3250v6CSrLIsKMFLyrCfWonR1STtt&index=6&t=0s) ###### tags: `圖論` ## 講義: fundamental_concept_1_2020 ## p.23 Recall biconditional method Direct method $P \Rightarrow Q$ Contrapositive metjod $\sim Q \Rightarrow \sim P$ Contradiction $\sim (P \land \sim Q)$ 三個等價敘述 ## P.24 * **Theorem** : An edge is a cut-edge if and only if it belongs to no cycle. * 補充 cut-edge : an edge whose deletion increases the number of components. ![](https://i.imgur.com/e0A40Ku.png) proof: e=(x, y): an edge H-e is connected iff e belongs to a cycle 1. $!P \Rightarrow !Q$ H-e is connected 就代表 e 不是cut-edge(!P) ## P.25 2. $!Q \Rightarrow !P$ e 在 cycle裡(!Q) ## P.26 * **Lemma**: Every **closed odd walk** contains an **odd cycle**. odd walk指的是 edge 是odd close就是出發點和終點一樣(走回出發點) ![](https://i.imgur.com/p1RS9tL.png) Case 2 : 拆成兩半,一邊odd,一邊even basis到induction的過程要補上假設:長度大於1,小於W的close odd walk,contain 一個 odd cycle ($Strong ~ Induction$) ## P.27 Note: * disjoint (set和set之間): set之間沒有共同元素 * independent(set裡的element):同一個set中的點沒有連線 ## P.28 & Extra [ref1](https://proofwiki.org/wiki/Graph_is_Bipartite_iff_No_Odd_Cycles) * **Theorem**: A graph is bipartite if and only if it has no odd cycle. $Proof:$ ::: info <font color=#000000> $\Rightarrow :$ 堆和堆之間連線如果要形成cycle,就必須出去再回來,這樣形成的只會是even cycle,就算是沒有cycle也不會是odd cycle $\Leftarrow :$ * Case 1: G裡沒有cycle - 把每一個edge的兩端放在不同堆裡 * Case 2: G裡不是odd cycle - 分兩堆最常用的技巧是長度(odd、even) ![](https://i.imgur.com/XIPyqKD.png) ![](https://i.imgur.com/PDtPaoc.png) >[color=#00a000] > >真的猛 >[name=Omnom] </font> ::: ## P.29 Eulerian * Def : **closed trail** containing all edges. + Trail is a walk with **no repeated edge** + $circuit$ : closed trail ## P.30 * **Lemma** : If every vertex v of a graph G has degree at least 2, then G contains a cycle. ![](https://i.imgur.com/Wmkbi2W.png) 1. u 如果是 endpoint of maximal path $P$,那麼 $u$ 的 neighbor 都會在 $P$ 上。 ``` 考慮在u左端新增一個新的vertex x的話,那麼u就不會是endpoint ``` 2. $u$ 的degree至少為2 $\rightarrow$ $u$ 的neighbor $v_1$, $v_2$也在 $P$上 <br/> $v_1$, $v_2$中間至少有2種path:^1^在$P$上、^2^透過$u$ ## P.31 * **Theorem**: A graph G is Eulerian if and only if it has ++**at most** one nontrivial component++ and ++its vertices all have **even degree**++. Note: trival component: no edges (但是1個點的Graph是Eulerian) * $proof$ :::info <font color=#000000> $\Rightarrow$ (1).如果有2個nontrivial component,根本不可能是尤拉圖,因為沒有trail可以連他們兩個 (2).點必須要一進一出,所以degree必須是偶數 $\Leftarrow$ Prove by **Strong Induction** on the number of **edges m**. **Basis**: m=0 一個點 (Not violate def. of Eulerian graph) **Induction**: m>0. (In fact, by assumption, m should ≥ 2.) The nontrivial component has a cycle $C$. (Recall Lemma: If every vertex $v$ of a graph $G$ has degree at least 2, then $G$ contains a cycle.) Let $G’=G-E(C)$ 將$G$的cycle $C$扣除(每個vertices degree少2),產生諸多component By induction hypothesis, each component of G’ has an Eulerian circuit. Merge these circuits to obtain an Eulerian circuit of G. (增加2 edges,一進一出) </font> ::: ## P.33 * **Theorem**: For a connected nontrivial graph with exactly 2k odd vertices, the minimum number of trails that decompose it is max{k, 1}. Recall: trail:no repeated edge G=(V,E)是connected. 有2k個degree為odd的點 $\Rightarrow$ decompose之後,最少trail數為max{k,1} ## P.35 Vertex Degree and Counting Maximum degree: $\Delta(G) = max_{v \in V(G)}\{d_G(v)\}$ Minimum degree: $\delta(G) = min_{v \in V(G)}\{d_G(v)\}$ Def: **regular graph** $\Delta(G)$ = $\delta(G)$ $k$-regular: common degree is $k$ ## P.36 Vertex Degree and Counting (Conti.) $Def$: **order** of a graph : number of vertices or |V(G)| **size** of a graph : number of edges or |E(G)| $Proposition : (Degree-Sum ~Formula)$ $\sum_{v \in V(G)}d(v)=2e(G)$, $\forall$ graph $G$ $Corollary$ 2: 奇數degree的點有偶數個,由proposition可以得知不可能有偶數個($2e(G)$ is even) ## P.37 Vertex Degree and Counting (Conti.) **Proposition**: If $k>0$, then a $k$-regular bipartite graph has the same number of vertices in each partite set. $proof$: 拆成X和Y兩邊,edge分佈於X,Y之間,然後由於是k regular,X堆和Y堆分到的點的個數會一樣 ## P.38 **Proposition**: The minimum number of edges in a connected graph with $n$ vertices is $n-1$. (其實就是tree) $proof$: 用到n vertices 和 k edges 至少有 n-k component,如果k=n-2,那就會有2個components,那就不會是connected graph ## P.39 ## P.40 **Proposition**: If $G$ is a simple $n$-vertex graph with $\delta(G)≥ \frac{(n-1)}{2}$, then $G$ is connected. ($\delta(G)$是G裡最小的degree) ![](https://i.imgur.com/7zr7PN2.png) $proof$: :::info <font color=#000000> $G$ is simple $\Rightarrow$ $| N (u) |≥ δ (G) ≥ \frac{n−1}{2}$ , similarly for $v$ (simple: 一個neighbor 對應一個degree) N (u)是指neighbor數量 = u 點 degree<br/> 對於 $u ≠ v$, **且$u,v$不相連**, $| N (u) ∪ N (v) |≤ n − 2$ (指的是u和v的common neighbor數會小於等於n-2,u,也就是扣掉u、v這兩點) ![](https://i.imgur.com/2R40KAt.png =20%x)($u,v$相連的話會出錯:e.g. $|N (u) ∪ N (v)|=n$) <br/> $| N (u) ∩ N (v) |=| N (u) | + | N (v) | − | N (u) ∪ N (v) |$ $≥ \frac{n-1}{2}+\frac{n-1}{2}-(n-2)=1$ ($u,v$至少有一個共同neighbor $\Rightarrow$ $u,v$ are connected ) (意思是說即使任兩個不相鄰的點都還是可以透過一個common neighbor來走道另一邊,前提是一開始的假設要先成立) </font> ::: ## P.41 **Theorem**: Every loopless graph $G$ has a bipartite subgraph with at least $\frac{e(G)}{2}$edges. ![](https://i.imgur.com/yIgbC1b.png) 關於第3點的說明: 因為H是edge數最多的bipartite graph,所以改變v neighbor的選法時,不應該增加H的edge $i.e.$ 將 $d_H(v)$拆成兩部分時,當然選最大的啊(murmur)