圖論
Direct method
Contrapositive metjod
Contradiction
三個等價敘述
Theorem :
An edge is a cut-edge if and only if it belongs to no cycle.
補充 cut-edge : an edge whose deletion increases the number of components.
proof:
e=(x, y): an edge
H-e is connected iff e belongs to a cycle
odd walk指的是 edge 是odd
close就是出發點和終點一樣(走回出發點)
Case 2 : 拆成兩半,一邊odd,一邊even
basis到induction的過程要補上假設:長度大於1,小於W的close odd walk,contain 一個 odd cycle ()
Note:
A graph is bipartite if and only if it has no odd cycle.
堆和堆之間連線如果要形成cycle,就必須出去再回來,這樣形成的只會是even cycle,就算是沒有cycle也不會是odd cycle
Case 1: G裡沒有cycle
Case 2: G裡不是odd cycle
真的猛
Omnom
Def : closed trail containing all edges.
Note:
trival component: no edges
(但是1個點的Graph是Eulerian)
(1).如果有2個nontrivial component,根本不可能是尤拉圖,因為沒有trail可以連他們兩個
(2).點必須要一進一出,所以degree必須是偶數
Prove by Strong Induction on the number of edges m.
Basis: m=0 一個點
(Not violate def. of Eulerian graph)
Induction: m>0. (In fact, by assumption, m should ≥ 2.)
The nontrivial component has a cycle .
(Recall Lemma: If every vertex of a graph has degree at least 2, then contains a cycle.)
Let
將的cycle 扣除(每個vertices degree少2),產生諸多component
By induction hypothesis, each component of G’ has an Eulerian circuit.
Merge these circuits to obtain an Eulerian circuit of G.
(增加2 edges,一進一出)
Recall: trail:no repeated edge
G=(V,E)是connected. 有2k個degree為odd的點
decompose之後,最少trail數為max{k,1}
Maximum degree:
Minimum degree:
Def: regular graph
=
-regular: common degree is
:
order of a graph : number of vertices or |V(G)|
size of a graph : number of edges or |E(G)|
, graph
2: 奇數degree的點有偶數個,由proposition可以得知不可能有偶數個( is even)
Proposition:
If , then a -regular bipartite graph has the same number of vertices in each partite set.
:
拆成X和Y兩邊,edge分佈於X,Y之間,然後由於是k regular,X堆和Y堆分到的點的個數會一樣
Proposition:
The minimum number of edges in a connected graph with vertices is . (其實就是tree)
:
用到n vertices 和 k edges 至少有 n-k component,如果k=n-2,那就會有2個components,那就不會是connected graph
Proposition:
If is a simple -vertex graph with , then is connected.
(是G裡最小的degree)
:
is simple , similarly for
(simple: 一個neighbor 對應一個degree)
N (u)是指neighbor數量 = u 點 degree
對於 , 且不相連, (指的是u和v的common neighbor數會小於等於n-2,u,也就是扣掉u、v這兩點)
(相連的話會出錯:e.g. )
(至少有一個共同neighbor are connected )
(意思是說即使任兩個不相鄰的點都還是可以透過一個common neighbor來走道另一邊,前提是一開始的假設要先成立)
Theorem: Every loopless graph has a bipartite subgraph with at least edges.
關於第3點的說明:
因為H是edge數最多的bipartite graph,所以改變v neighbor的選法時,不應該增加H的edge
將 拆成兩部分時,當然選最大的啊(murmur)