Try   HackMD

2020-04-10 Fundamental Concept III

video

tags: 圖論

講義: fundamental_concept_1_2020

p.23 Recall biconditional method

Direct method

PQ
Contrapositive metjod
Q⇒∼P

Contradiction
(PQ)

三個等價敘述

P.24

  • Theorem :
    An edge is a cut-edge if and only if it belongs to no cycle.

  • 補充 cut-edge : an edge whose deletion increases the number of components.

    Image Not Showing Possible Reasons
    • The image file may be corrupted
    • The server hosting the image is unavailable
    • The image path is incorrect
    • The image format is not supported
    Learn More →

proof:
e=(x, y): an edge
H-e is connected iff e belongs to a cycle

  1. !P!Q

    H-e is connected 就代表 e 不是cut-edge(!P)

P.25

  1. !Q!P

    e 在 cycle裡(!Q)

P.26

  • Lemma: Every closed odd walk contains an odd cycle.

odd walk指的是 edge 是odd
close就是出發點和終點一樣(走回出發點)

Image Not Showing Possible Reasons
  • The image file may be corrupted
  • The server hosting the image is unavailable
  • The image path is incorrect
  • The image format is not supported
Learn More →

Case 2 : 拆成兩半,一邊odd,一邊even

basis到induction的過程要補上假設:長度大於1,小於W的close odd walk,contain 一個 odd cycle (

Strong Induction)

P.27

Note:

  • disjoint (set和set之間): set之間沒有共同元素
  • independent(set裡的element):同一個set中的點沒有連線

P.28 & Extra

ref1

  • Theorem:

A graph is bipartite if and only if it has no odd cycle.

Proof:

⇒:
堆和堆之間連線如果要形成cycle,就必須出去再回來,這樣形成的只會是even cycle,就算是沒有cycle也不會是odd cycle

⇐:

  • Case 1: G裡沒有cycle

    • 把每一個edge的兩端放在不同堆裡
  • Case 2: G裡不是odd cycle

    • 分兩堆最常用的技巧是長度(odd、even)

Image Not Showing Possible Reasons
  • The image file may be corrupted
  • The server hosting the image is unavailable
  • The image path is incorrect
  • The image format is not supported
Learn More →

Image Not Showing Possible Reasons
  • The image file may be corrupted
  • The server hosting the image is unavailable
  • The image path is incorrect
  • The image format is not supported
Learn More →

真的猛
Omnom

P.29 Eulerian

  • Def : closed trail containing all edges.

    • Trail is a walk with no repeated edge
    • circuit
      : closed trail

P.30

  • Lemma :
    If every vertex v of a graph G has degree at least 2, then G contains a cycle.

Image Not Showing Possible Reasons
  • The image file may be corrupted
  • The server hosting the image is unavailable
  • The image path is incorrect
  • The image format is not supported
Learn More →

  1. u 如果是 endpoint of maximal path
    P
    ,那麼
    u
    的 neighbor 都會在
    P
    上。
考慮在u左端新增一個新的vertex x的話,那麼u就不會是endpoint
  1. u
    的degree至少為2
    u
    的neighbor
    v1
    ,
    v2
    也在
    P

    v1
    ,
    v2
    中間至少有2種path:1
    P
    上、2透過
    u

P.31

  • Theorem:
    A graph G is Eulerian if and only if it has at most one nontrivial component and its vertices all have even degree.

Note:
trival component: no edges
(但是1個點的Graph是Eulerian)

  • proof


(1).如果有2個nontrivial component,根本不可能是尤拉圖,因為沒有trail可以連他們兩個
(2).點必須要一進一出,所以degree必須是偶數


Prove by Strong Induction on the number of edges m.

Basis: m=0 一個點
(Not violate def. of Eulerian graph)

Induction: m>0. (In fact, by assumption, m should ≥ 2.)
The nontrivial component has a cycle

C.
(Recall Lemma: If every vertex
v
of a graph
G
has degree at least 2, then
G
contains a cycle.)

Let

G=GE(C)
G
的cycle
C
扣除(每個vertices degree少2),產生諸多component

By induction hypothesis, each component of G’ has an Eulerian circuit.
Merge these circuits to obtain an Eulerian circuit of G.
(增加2 edges,一進一出)

P.33

  • Theorem:
    For a connected nontrivial graph with exactly 2k odd vertices, the minimum number of trails that decompose it is max{k, 1}.

Recall: trail:no repeated edge
G=(V,E)是connected. 有2k個degree為odd的點

decompose之後,最少trail數為max{k,1}

P.35 Vertex Degree and Counting

Maximum degree:

Δ(G)=maxvV(G){dG(v)}
Minimum degree:
δ(G)=minvV(G){dG(v)}

Def: regular graph

Δ(G) =
δ(G)

k
-regular: common degree is
k

P.36 Vertex Degree and Counting (Conti.)

Def:
order of a graph : number of vertices or |V(G)|
size of a graph : number of edges or |E(G)|

Proposition:(DegreeSum Formula)

vV(G)d(v)=2e(G),
graph
G

Corollary 2: 奇數degree的點有偶數個,由proposition可以得知不可能有偶數個(
2e(G)
is even)

P.37 Vertex Degree and Counting (Conti.)

Proposition:
If

k>0, then a
k
-regular bipartite graph has the same number of vertices in each partite set.

proof:
拆成X和Y兩邊,edge分佈於X,Y之間,然後由於是k regular,X堆和Y堆分到的點的個數會一樣

P.38

Proposition:
The minimum number of edges in a connected graph with

n vertices is
n1
. (其實就是tree)

proof:
用到n vertices 和 k edges 至少有 n-k component,如果k=n-2,那就會有2個components,那就不會是connected graph

P.39

P.40

Proposition:

If

G is a simple
n
-vertex graph with
δ(G)(n1)2
, then
G
is connected.
(
δ(G)
是G裡最小的degree)

proof:

G is simple
|N(u)|δ(G)n12
, similarly for
v

(simple: 一個neighbor 對應一個degree)
N (u)是指neighbor數量 = u 點 degree

對於
uv
,
u,v
不相連
,
|N(u)N(v)|n2
(指的是u和v的common neighbor數會小於等於n-2,u,也就是扣掉u、v這兩點)
(
u,v
相連的話會出錯:e.g.
|N(u)N(v)|=n
)


|N(u)N(v)|=|N(u)|+|N(v)||N(u)N(v)|

n12+n12(n2)=1
(
u,v
至少有一個共同neighbor
u,v
are connected )
(意思是說即使任兩個不相鄰的點都還是可以透過一個common neighbor來走道另一邊,前提是一開始的假設要先成立)

P.41

Theorem: Every loopless graph

G has a bipartite subgraph with at least
e(G)2
edges.

關於第3點的說明:
因為H是edge數最多的bipartite graph,所以改變v neighbor的選法時,不應該增加H的edge

i.e.
dH(v)
拆成兩部分時,當然選最大的啊(murmur)