洪翌誠
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    ## 開頭 - 這邊需要一小段內容提供給他們讓他們知道資料分析的流程大致上應該長怎麼樣子,可以提供以下圖片然後附帶一點說明 ![](https://www.flag.com.tw/activity/F9364/img/LP_F9364_2.jpg) - 我們目前使用的是 colab 所以也不太會有環境問題,之後如果要建立在本地,就需要再提供設定文件 ## 主要課程內容 ### 1. 定義問題 (Define the Problem) - 目標:清楚定義要解決的業務問題,並將其轉化為具體的資料分析問題。 - 解釋:這一步至關重要,它決定了分析的方向。問題必須具體且可量化,例如「如何增加銷售量」或「哪些客戶可能會流失」。 - 評估可行性:檢查是否有足夠的數據和技術來解決這個問題。 > 這一步驟的目的主要是讓他們先清楚目前他們想要處理什麼問題,由於第一堂社課應該會教,所以我們只要內容稍微帶過一下就好 ### 2. 收集資料 (Collect Data) - 目標:從各種來源收集相關資料,這可能包括內部資料庫、外部資料集、API 或是公開資料。 - 解釋:確保資料的來源可信且與問題相關。資料可以來自CRM、財務報表、網路數據等。 > 這邊可以跟他們說明,通常會有哪些搜集資料的方法,例如: 爬蟲、資料庫撈取、檔案讀取、使用 API。不過我們在這邊只要提供檔案讀取的給他就好,也就是 pandas 中的 read 系列,read 系列有很多個,他們比較有機會使用到的大概就是 read_csv, read_excel 這兩個介紹一下就好,可以補充關於 sklearn 或者其他 package 的 API 資料集 > 介紹格式可以有:容易使用到的參數設定,什麼是路徑,column name 與 index 設定,如果你覺得有多的可以補充也可以加上去 ### 3. 資料清理 (Data Cleaning) - 目標:處理資料中的缺失值、異常值和重複資料,將資料轉換成適合分析的形式。 - 解釋:清理資料是必不可少的步驟,以確保分析的準確性。這通常包括刪除缺失資料、處理異常數據等。 #### 資料清洗的大綱 1. 處理缺失值重複內容:選擇適當的方法來填補或刪除缺失的數據。 2. 異常值檢測:處理極端值或不符合預期的數據點,避免影響模型的準確性。 3. 資料一致性檢查:確保數據格式、單位一致,如時間格式統一,數值範圍正確。 - [參照內容](https://www.nextlink.cloud/news/data-cleansing-introduction/) > 這一段的功能應該會先包括 概覽、判讀、處理 這三個階段 > 概覽:info, describe ,讓他們能夠先掌握資料的概況,通常使用到的大概就統計概述另外就是圖表呈現,這邊先以最簡單的統計概述給他們就好 > 判讀:這部分要告訴他們什麼樣的情況叫做有離群值、異常值、重複資料,通常在這部分的判讀會需要用圖表呈現會比較好理解,或許這部分可以先放在進階?最簡單的大概就是重複資料(pd.DataFrame.duplicated()) 這樣去使用應該最簡單 ### 4. 探索性資料分析 (Exploratory Data Analysis, EDA) - 目標:初步檢視資料特徵,並使用可視化方法來理解資料的分布、趨勢、相關性等。 - 解釋:透過EDA,我們可以發現資料中的模式、異常點或重要的變量。常用工具如直方圖、散佈圖和相關矩陣。 - [參考資料](https://medium.com/@zhihaoshi1729/%E8%B3%87%E6%96%99%E7%A7%91%E5%AD%B8%E7%AD%86%E8%A8%98-%E4%B8%80-%E5%A6%82%E4%BD%95%E9%81%B8%E5%8F%96%E7%89%B9%E5%BE%B5%E5%92%8C%E7%99%BC%E7%8F%BE%E7%89%B9%E5%BE%B5%E4%B9%8B%E9%96%93%E7%9A%84%E7%9B%B8%E9%97%9C%E6%80%A7-e7fd74053d24) > EDA 的部分會需要用到蠻大量的視覺化工具,視覺化工具我覺得可以放在第二份,我們先以第一份為主處理就好 ### 5. 特徵工程 (Feature Engineering) - 目標:創建新的特徵或轉換已有特徵來提高模型的效果。 - 解釋:這可能涉及將類別變量轉換為數值、創建衍生變量(如每客戶收入)或標準化變量。 > 這個部分也可以放在第二份之中 ### 6. 選擇模型 (Model Selection) - 目標:根據分析目標選擇適合的統計或機器學習模型,例如回歸模型、分類模型或聚類分析。 - 解釋:根據資料的性質與問題選擇適當的演算法,這一步是將數據轉化為可操作的結論的核心。 > 這邊主要要說明的是,模型的選擇與最一開始定義問題會有一些關聯,分類、回歸、非監督等等,我們這邊先以簡單的分類來去做舉例就好 ### 7. 模型訓練 (Model Training) - 目標:使用訓練資料集訓練所選模型,調整模型參數以提高預測或分類的準確度。 - 解釋:這是模型從資料中學習的過程,會根據資料特徵進行最佳化。 > 訓練模型第一份目前就直接 train_test_split, fit 就可以,第二份就可以放 cross validation tunning 等等的,慢慢提供 ### 8. 模型評估 (Model Evaluation) - 目標:評估模型的性能,使用測試資料來檢查模型的準確性、召回率、F1-score等。 - 解釋:如果模型表現不佳,可能需要回到特徵工程或重新選擇模型。 > 根據不同的問題定義,可以採用不同的指標來判讀模型訓練的好壞,進而來去解決未來的問題,因為第一份看來是分類,所以在這邊我們就用 confusion matrix 各個指標的判讀 ### 重點整理 1. 問題定義 2. 內容讀取與簡單的掌握資料 3. 處理的部分少一點沒關係 4. 建模 5. 學會判讀模型好壞 ### 未來要補充的 1. 搜集資料的方法? 2. 資料清洗的細項 3. EDA 的方法(例如更多的視覺化工具) 4. 特徵工程的方法 5. 目前是分類的類別,之後補充 回歸 聚類 的範例 6. 模型訓練的部分未來可以提供更多的像是超參數調整,不同種的訓練方法

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully