Jason Williams
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    ## Shared URLS - Learn more markdown: [link](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet) - Human genome: [link](https://www.ncbi.nlm.nih.gov/projects/genome/guide/human/index.shtml) - SNPedia: [link](https://www.snpedia.com/index.php/SNPedia) - Project Jupyter: [link](https://jupyter.org/) - Interesting Jupyter notebooks: [link](https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks) - Try Linux terminal: [link](https://cocalc.com/doc/terminal.html) - mybinder.org: [link](https://mybinder.org/) - Notebooks: https://github.com/JasonJWilliamsNY/biocoding-2022-notebooks - Zoom link: [TBD](TBD) - JupyterHub: [TBD](TBD) --- ## Learning more after the class **Notebooks used in this course** - Biocoding 2020 Notebooks [link](https://github.com/JasonJWilliamsNY/biocoding-2020-notebooks) - - You can download these materials: [link](https://github.com/JasonJWilliamsNY/biocoding-2020-notebooks/archive/master.zip) **General Coding** - CodeCademy: [link](https://www.codecademy.com/) - Hour of code (also in languages other than English): [link](https://code.org/learn) **Software installations** Be sure you have permission to install software - Try Ubuntu: [link](https://tutorials.ubuntu.com/tutorial/try-ubuntu-before-you-install#0) - Python: [link](https://www.python.org/downloads/) - Jupyter: [link](https://jupyter.org/) - Wing IDE: [link](https://wingware.com/) - Atom text editor: [link](https://atom.io/) **Bioinformatics** - Learn bioinformatics in 100 hours: [link](https://www.biostarhandbook.com/edu/course/1/) - Rosalind bioinformatics: [link](http://rosalind.info/about/) - Bioinformatics coursera: [link](https://www.coursera.org/learn/bioinformatics) - Bioinformatics careers: [link](https://www.iscb.org/bioinformatics-resources-for-high-schools/careers-in-bioinformatics) **Help** - General software help: [link](https://stackoverflow.com/) - Bioinformatics-specific software help: [link](https://www.biostars.org/) --- ## Account names lanaod kwa chiburns reichman velozny lanaos wang ### Jupyter - [Hub address](http://18.207.102.1:8000/hub/login) ### Notebook setup git clone https://github.com/JasonJWilliamsNY/biocoding-2021-notebooks.git ### DNA Barcoding - [silica DNA isolation](https://dnabarcoding101.org/lab/protocol-2.html#alternateb) --- ## Shared notes ### Markdown Practice - My name is Jason. A useful website I like is [Space Weather](https://www.spaceweather.com/) - hi. [link](youtube.com) # Ron Velozny:!![logo] - nice gif - woah that's cute - [openworm](https://openworm.org/) [logo]:https://i.pinimg.com/originals/2e/c5/a5/2ec5a5c021b7d6d9e5bc5051adbb2be1.gif ### G.U.I: ------ + defenition: graphical user interface + i know what gui ive never seen someone say it as a word ## Intro Python Notebook 1 #### Solve for starting volume starting_volume = starting_volume = starting_volume = (final_concentration * final_volume)/start_concentration starting_volume = starting_volume = (final_concentration * final_volume)/start_concentration ## Intro Python Notebook 2 #### Variable names **Average weight of a mouse group?** (avg_mass * number_of_mice)/number_of_mice avgweight_group avg_wgt_alpha alpha_avg avg_weight_alpha avgW = avg_alpha **Number of mice in a group?** avgP = nmbmice_group mice#nmb_alpha alpha_pop numberofmice number_alpha num_mice_alpha #### Challenge In the cell below, print the alpha_id character by character in reverse ```python for i in range(1,len(alpha_id)+1): print(alpha_id[-i], end="") ``` print(alpha_id[7],alpha_id[6], alpha_id[5],alpha_id[4], alpha_id[3], alpha_id[2], alpha_id[1], alpha_id[0]) ##### Create new variables that contain the initials of the experimenter for each mouse group; print the value of these new variables alpha_initials=alpha_id[0:3:] print(initials_alpha) alpha_letters = (alpha_id[0:3:]) beta_letters = (beta_id[0:3:]) gamma_letters = (gamma_id[0:3:]) print(alpha_letters + beta_letters + gamma_letters) initials_alpha = alpha_id[0:3] initials_beta = beta_id[0:3] initials_gamma = gamma_id[0:3] alphaIDint = alpha_id[0:3] betaIDint = beta_id[0:3] gammaIDint= gamma_id[0:3] print(alphaIDint,betaIDint,gammaIDint) #### Create new variables that contain the ID of the experimenter for each mouse group; print the value of these new variables exp_id_alpha = alpha_id[3:] exp_id_beta = beta_id[3:] exp_id_gamma = gamma_id[3:] alpha_id = (alpha_id[3::]) beta_id = (beta_id[3::]) gamma_id = (gamma_id[3::]) print(alpha_id + beta_id + gamma_id) #### Fasta Challenge: You should be able to do this in 3 lines of code To make the printed information move to a new line, use the newline character '\n' - used as a string with quotes Python will not print '\n' to the screen, but interpret that you mean to end one line at that location and begin a newline sequence_name = "This is the name of the sequence." sequence_string = "ACTAGCAGCATTGGACCATGACTAGTGACTAGCAGCATG" print(">" + sequence_name + "\n" + sequence_string) DNAname = "sequence 001" DNAseaquence = "AAGCTGACGGGGAGCTAGTCTTAGTCGTACGTTCGAT" fullFASTA = ">"+DNAname+"\n" + DNAseaquence print(fullFASTA) seq_name = "sequence 001" seq = "ATTCGAGGATCGATTTCGATCGATGCTTAGCTTTAGCTTTTTTAGATCTCCCA" fasta_format = (f">{seq_name}\n{seq}") print(fasta_format) sequence_title = 'Sequence Name' sequence_actual = 'ACTAGTAGCGACTCGACGTACGCACTAGCACTACGCTACGACGACTGCATGC' print ('>', sequence_title, "\n" , sequence_actual) ### Examining the HIV genome #### Determine and print the length of the HIV genome print(len(hiv_genome)) print(len(hiv_genome)) #### Create variables for and print the sequences for the following HIV genes - gag - pol - vif - vpr - env gag = hiv_genome[789:2291] pol = hiv_genome[2084:5096] vif = hiv_genome[500:5619] vpr = hiv_genome[5558:5850] env = hiv_genome[6044:8794] print("gag="+hiv_genome[789:2292]) print("pol="+hiv_genome[2084:5096]) print("vif="+hiv_genome[5040:5619]) print("vpr="+hiv_genome[5558:5850]) print("env="+hiv_genome[6224:8795]) gag = hiv_genome[789:2292] pol = hiv_genome[2084:5096] vif = hiv_genome[5040:5619] vpr = hiv_genome[5558:5850] env = hiv_genome[6224:8795] gag = hiv_genome[789:2292] pol = hiv_genome[2084:5096] vif = hiv_genome[5040:5619] vpr = hiv_genome[5558:5850] env = hiv_genome[6224:8795] #### Generate the RNA sequence for each of the genes you have isolated above hiv_genome_RNA = hiv_genome.replace('T','U') print(hiv_genome_RNA) gag_rna = gag.replace('t','u') pol_rna = pol.replace('t','u') vif_rna = vif.replace('t','u') vpr_rna = vpr.replace('t','u') env_rna = env.replace('t','u') print(hiv_genome.replace("t","u")) #### For each gene, generate a sum for each of the nuclotides in that gene (e.g., #of 'A',#of'U',#of'G',#of'C') - For each gene, caculate the GC content (%) - percent GC = sum of (G) + sum (C) / total number of nuclotides in a given gene print(gag.count('g')+gag.count('c')/len(gag)) print(pol.count('g')+pol.count('c')/len(pol)) print(vif.count('g')+vif.count('c')/len(vif)) print(vpr.count('g')+vpr.count('c')/len(vpr)) print(env.count('g')+env.count('c')/len(env)) --- gagGC = gag.count("G") + gag.count("C")/len(gag) polGC = pol.count("G") + pol.count("C")/len(pol) vifGC = vif.count("G") + vif.count("C")/len(vif) vprGC = vpr.count("G") + vpr.count("C")/len(vpr) envGC = env.count("G") + env.count("C")/len(env) print(str(gagGC)+"\n"+str(polGC)+"\n"+str(vifGC)+"\n"+str(vprGC)+"\n"+str(envGC)+"\n") --- print (hiv_genome.count("a")) print (hiv_genome.count("t")) print (hiv_genome.count("c")) print (hiv_genome.count("g")) --- sum_g=hiv_genome.count("g") sum_c=hiv_genome.count("c") sum_total=len(hiv_genome) print((sum_g+sum_c)/sum_total) --- def num_nucleotides(gene_name, gene_seq): num_A = gene_seq.count("A") num_U = gene_seq.count("U") num_G = gene_seq.count("G") num_C = gene_seq.count("C") return print(f"The number of 'A's in {gene_name} is {num_A}, the number of 'U's is {num_U}, the number of 'G's is {num_G}, the num of 'C's is {num_C}") num_nucleotides("gag_rna", gag_rna) ## Notebook 3 #### Print the list of these HIV genes in order given the list below - The correct order is - gag, pol, vif, vpr, vpu, env, nef ```python print(hiv_gene_names[1]) print(hiv_gene_names[3]) print(hiv_gene_names[2]) print(hiv_gene_names[4]) print(hiv_gene_names[5]) print(hiv_gene_names[6]) print(hiv_gene_names[0]) print(hiv_gene_names[7]) ``` --- --- ```python! print(hiv_gene_names[1], hiv_gene_names[3], hiv_gene_names[2], hiv_gene_names[4], hiv_gene_names[5], hiv_gene_names[0], hiv_gene_names[6]) ``` --- --- #### Write a for loop that prints 'nucleotide!' for each of the nucleotides for nucleotide in nucleic_acids: print("nucleotide!") for nucleotide in nucleic_acids: print('nucleotide!') for nucleotides in nucleic_acids: print (nucleotides+" nucleotide!") #### Write a 'for' loop that prints the nucleotide name and its one-letter abbreviation. for nucleotide in nucleic_acids: print(nucleotide,'('+nucleotide[0]+')') --- for nucleotide in nucleic_acids: print(nucleotide) print(nucleotide[0]) --- for nucleotide in nucleic_acids: print(nucleotide[0].upper(),nucleotide) --- ```python for nucleotide in nucleic_acids: print(nucleotide, nucleotide[0]) ``` #### Use conditionals so that if the float is greater than or equal to 0.5 consider that #'Heads' otherwise 'Tails' ``` random_int = random.randint(0,10) if random_int /10 >= 0.5: print('Heads!') else: print('Tails!') ``` --- head_tails = random.ranf(1) if head_tails <= 0.5: print('Heads!') else: print('Tails!') --- ```python l = "" for i in range(1000): x = random.ranf() if x >= 0.5: #print("heads") l+= "1" else: #print("tails") l+= "0" print(str(l.count("0"))+" heads") print(str(l.count("1"))+" tails") ``` ### What is a model? What are some examples? Why does science depend on this? example a typically generic/stereotypical/representative example of smth bigger A model is an example of something used to understand it better A model is an ideal version of something sometimes used to better understand a process. There are physical models of cells and such that help people understand what cells look like. Model organisms are idealized. something we can replicate and use as an example to make assumptions about how things work no #### 1. Write a simulation which determines if in one round of replication HIV will mutate or not¶ ``` mutation_state=["mutation","no_mutation"] mutation_rate=[0.044,0.956] mutation_flip=random.choice(mutation_state,p=mutation_rate) print(mutation_flip) ``` --- ```python mutating = ['mutation','no_mutation'] mutatingC = [0.044,0.956] Ismutating = random.choice(mutating, p = mutatingC) print(Ismutating) ``` --- mutation_state = ['mutation','no_mutation'] mutation_probabilities = [0.44,0.56] fair_mutate = random.choice(mutation_state,p = mutation_probabilities) print("My mutation is %s" %fair_mutate) --- mutation_possibility = ['a mutation', 'no mutation'] probabilities = [0.44, 0.56] mutation_chance = random.choice(mutation_possibility, p = probabilities) print(mutation_chance) --- mutation_state = ["mutation", "no_mutation"] mutation_probabilities = [0.44, 0.56] mutation_flip = random.choice(mutation_state, p = mutation_probabilities) print(f"The hiv genome has {mutation_flip}s") --- ``` result_list = [] for result in range(0,20): determined_results = random.choice(mutation_possibility, p = probabilities) result_list.append(determined_results) print(result_list) ``` #### If HIV is in the mutation state, determine which nuclotide to mutate --- ```python nucleic_acids_DNA = ['adenine', 'guanine', 'cytosine', 'thymine'] onefourth_prob = [0.25, 0.25,0.25, 0.25] nucleic_results = [] for mutation in range(1,2): fair_flip = random.choice(nucleic_acids_DNA,p = onefourth_prob) nucleic_results.append(fair_flip) print(nucleic_results) ``` --- ```python= options = ["a", "c","g", "t"] optionA = [0.0, 1/33, 29/33,3/33] optionC = [14/95, 0.0, 0.0, 81/95] optionG = [146/152, 2/152, 0.0, 4/152] optionT = [20/44, 18/44, 6/44,0.0] location = random.randint(0,len(genome)) if genome[location] == "a": genome = genome[:location] + random.choice(options, p = optionA) + genome[location:] elif genome[location] == "c": genome = genome[:location] + random.choice(options, p = optionC) + genome[location:] elif genome[location] == "g": genome = genome[:location] + random.choice(options, p = optionG) + genome[location:] else: genome = genome[:location] + random.choice(options, p = optionT) + genome[location:] ``` ```python randombase = random.randint(0, len(hiv_genome)) print(randombase) print(hiv_genome[randombase]) ``` ``` nuclear_location=random.randint(0,len(hiv_genome)) nuclear_choose=hiv_genome[nuclear_location] print(nuclear_choose) ops=["a","c","g","t"] opa=[0,1/33,29/33,3/33] opc=[14/95,0,0,81/95] opg=[146/152,2/152,0,4/152] opt=[20/44,18/44,6/44,0] if nuclear_choose=="a": mutation_a=random.choice(ops,p=opa) print("a to",mutation_a) elif nuclear_choose=="c": mutation_c=random.choice(ops,p=opc) print("c to",mutation_c) elif nuclear_choose=="g": mutation_g=random.choice(ops,p=opg) print("g to",mutation_g) elif nuclear_choose=="t": mutation_t=random.choice(ops,p=opt) print("t to",mutation_t) else: print("error") ``` # compleated ```python #set variables lists and strings from numpy import random hiv_genome = "genome way to long add later" mutating = ['mutation','no_mutation'] mutatingC = [0.044,0.956] mutations = 0 #number of mutations will be randomised later options = ["a", "c","g", "t"] #pool of mutations #chance of what to mutate to for each nucleotide optionA = [0.0, 1/33, 29/33,3/33] optionC = [14/95, 0.0, 0.0, 81/95] optionG = [146/152, 2/152, 0.0, 4/152] optionT = [20/44, 18/44, 6/44,0.0] #initianalize amount of mutations 4.4% 200 times for flip in range(1,200): Ismutating = random.choice(mutating, p = mutatingC) if Ismutating == 'mutation': mutations += 1 #mutation function def mutation(genome): location = random.randint(0,len(genome)) gene = genome[location] if gene == "a": genome = genome[:location] + random.choice(options, p = optionA) + genome[location+1:] elif gene == "c": genome = genome[:location] + random.choice(options, p = optionC) + genome[location+1:] elif gene == "g": genome = genome[:location] + random.choice(options, p = optionG) + genome[location+1:] elif gene == "t" : genome = genome[:location] + random.choice(options, p = optionT) + genome[location+1:] else: print("inex[" + str(location) + "] is not a reconized nucleotide[a,c,t,g]") return(genome) print("inex[" + str(location) + "] "+gene+" > " + str(genome[location])) return(genome) #main() print(hiv_genome) for i in range(mutations): hiv_genome = mutation(hiv_genome) print(hiv_genome) print(str(len(mutations)) +" mutations") ``` ## Notebook 4 #### build a random dna sequence... --- ```python #import from numpy import random #amount of nucleotides initial_sequence_length = 0 final_sequence_length = 80 #lists dna_sequence = [] my_nucleotides = ['a','t','g','c'] my_nucleotide_probs = [0.25,0.25,0.25,0.25] #print out nucleotides while initial_sequence_length < final_sequence_length: nucleotide = random.choice(my_nucleotides,p=my_nucleotide_probs) dna_sequence.append(nucleotide) initial_sequence_length = initial_sequence_length + 1 #print the final result print('>random_sequence (length:%d)\n%s' % (len(dna_sequence), dna_sequence)) ``` --- ```python from numpy import random final_sequence_length = 80 initial_sequence_length = 0 dna_sequence = '' #where the sequence will be stored my_nucleotides = ['a','t','g','c'] #options of what can be added to sequence my_nucleotide_probs = [0.25,0.25,0.25,0.25] #wiered way to store the probability of each option while initial_sequence_length <= final_sequence_length: nucleotide = random.choice(my_nucleotides,p=my_nucleotide_probs) #choosing one of the strings at random dna_sequence = dna_sequence + nucleotide #adding chosen string initial_sequence_length = initial_sequence_length + 1 #counting up to 80 print('>random_sequence (length:%d)\n%s' % (len(dna_sequence), dna_sequence)) ``` # optimized it: ```python from numpy import random sequence_length = 80 #length of seaquence you want dna_sequence = '' #where the sequence will be stored my_nucleotides = ['a','t','g','c'] #options of what can be added to sequence for i in range(sequence_length): #running function once for every nucliotide you want dna_sequence += random.choice(my_nucleotides) #choosing a random nucliotide from the nucliotide pool and adding it to the sequence print('>random_sequence (length:%d)\n%s' % (len(dna_sequence), dna_sequence)) #printing sequence in FASTA format ``` ``` # build a random dna sequence... from numpy import random final_sequence_length = 80 initial_sequence_length = 0 dna_sequence = "" my_nucleotides = ["A", "T", "G", "C"] my_nucleotide_probs = [0.25, 0.25, 0.25, 0.25] #equal prob of each nucleotide while initial_sequence_length < final_sequence_length: #while under desired length random_nucleotide = random.choice(my_nucleotides, p = my_nucleotide_probs) dna_sequence += random_nucleotide #adds random nucleotide to the dna sequence initial_sequence_length += 1 #increases sequence length (makes sure that the while loop won't run forever) print(f">random_sequence (length: {len(dna_sequence)})\n{dna_sequence}") ``` from numpy import random final_sequence_length = 80 #length initial_sequence_length = 1 dna_sequence = [] #where the sequence will be stored my_nucleotides = ["a","t","c","g"] my_nucleotide_probs = [0.25,0.25,0.25,0.25] while initial_sequence_length < final_sequence_length: nucleotide = random.choice(my_nucleotides,p=my_nucleotide_probs) #new nucleartide dna_sequence.append(nucleotide) #add the nucleartide to to sequence initial_sequence_length = initial_sequence_length + 1 print('>random_sequence (length:%d)''\n''%s' % (len(dna_sequence),dna_sequence)) from numpy import random final_sequence_length = 80 initial_sequence_length = 1 dna_sequence = '' my_nucleotides = ['a','t','g','c'] my_nucleotide_probs = [0.25,0.25,0.25,0.3] while initial_sequence_length < final_sequence_length: nucleotide = random.choice(my_nucleotides,p=my_nucleotide_p) dna_sequence = dna_sequence + nucleotide initial_sequence_length = initial_sequence_length + 1 print('>random_sequence (length:%d)\n%s' % (len(dna_sequence), dna_sequence)) #### Challenge: Your dictionary should contain the key:value pair 'beta_id':'SJW99399'. Using only that value from the my_mouse_exp dictionary, create a new entry in my_mouse_exp , experimenter which has the value SJW extracted from the 'beta_id':'SJW99399' dictionary entry. ```python my_mouse_exp = {'alpha':{'avgp':3,'avgm':17,'id':"CGJ28371"} ,'beta':{'avgp':5,'avgm':16.4,'id':"SJW99399"} ,'gamma':{'avgp':6,'avgm':17.8,'id':"PWS29382"}} ``` ```python my_mouse_exp['experimenter'] = my_mouse_exp['beta_id'][0:3] print(my_mouse_exp) ``` my_mouse_exp["beta_experimenter"] = my_mouse_exp["beta_id"][0:3] print(my_mouse_exp) #### Write the appropriate code to translate an RNA string to a protein sequence: --- ```python protein = "" for i in range(0,len(rna), 3): protein+=amino_acids[rna[i:i+3]] print(protein) ``` --- ```python startX_val = 0 loop_count = 0 rna_by3 = ((len(rna))/3) grouped_rna = [] #This groups the RNA into groups of three into a list while loop_count < rna_by3: grouped_rna.append(rna[startX_val:startX_val+3]) loop_count = loop_count+1 startX_val = startX_val+3 #variables reset loop_count=0 startX_val=0 display_list = [] #This converts the list of RNA by threes into the amino acids, then stores them in the display list while loop_count < len(grouped_rna): display_list.append(amino_acids[grouped_rna[startX_val]]) loop_count = loop_count + 1 startX_val = startX_val + 1 print(display_list) ``` ``` rna = 'AUGCAUGCGAAUGCAGCGGCUAGCAGACUGACUGUUAUGCUGGGAUCGUGCCGCUAG' protein = "" for i in range(0, len(rna)-2, 3): #loops through by 3 codon = rna[i] + rna[i+1] + rna[i+2] #takes codon protein += amino_acids[codon] #translates codon and adds it to the protein print(protein) ``` --- #### Bonus: Can you translate this sequence in all 3 reading frames? ```python for frame in range(3):#1 iratation for every frame protein = "" #initialising variable to store protien for i in range(0+frame,len(rna), 3):# goes over the entire rna seaquence in steps of 3 if i + 3<len(rna): #not to overload the function for not overloading the string protein+=amino_acids[rna[i:i+3]] #adds it to protien print("frame %d: %s" % (frame + 1, protein)) #prints the protien and what frame its on ``` ``` rna = "AUGCAAGACAGGGAUCUAUUUACGAUCAGGCAUCGAUCGAUCGAUGCUAGCUAGCGGGAUCGCACGAUACUAGCCCGAUGCUAGCUUUUAUGCUCGUAGCUGCCCGUACGUUAUUUAGCCUGCUGUGCGAAUGCAGCGGCUAGCAGACUGACUGUUAUGCUGGGAUCGUGCCGCUAG" def rna_conversion(reading_frame): #function w/ reading fram (1-3) as inputs protein = "" for i in range(reading_frame - 1, len(rna)-2, 3): #adapts for reading frame and total # codon = rna[i:i+3] #makes codon protein += amino_acids[codon] return protein rna_conversion(1) rna_conversion(1) rna_conversion(3) #enter a number between 1 and three to represent the diff reading frames ``` #### Translating DNA to RNA TO PROTEIN ```python print(dna.replace("T","U")) ``` ``` dna = "ACGTCGTTTACGTACGGGAGTCGTACGATCCTCCCGTAGCTCGGGATCGTTTTATCGTAGCGGGAT" #no start codon : rna = dna.replace("T", "U") #converts the DNA to RNA protein = "" for i in range(0, len(rna)-2, 3): #loops through by 3 without maxing out codon = rna[i:i+3] #takes codon protein += amino_acids[codon] #adds letter to the protein sequence print(protein) ``` --- ```python dna = 'ACGTCGTTTACGTACGGGAGTCGTACGATCCTCCCGTAGCTCGGGATCGTTTTATCGTAGCGGGAT' rna = dna.replace('T','U') startX_val = 0 loop_count = 0 rna_by3 = ((len(rna))/3) grouped_rna = [] #This groups the RNA into groups of three into a list while loop_count < rna_by3: grouped_rna.append(rna[startX_val:startX_val+3]) loop_count = loop_count+1 startX_val = startX_val+3 #variables reset loop_count=0 startX_val=0 display_list = [] #This converts the list of RNA by threes into the amino acids, then stores them in the display list while loop_count < len(grouped_rna): display_list.append(amino_acids[grouped_rna[startX_val]]) loop_count = loop_count + 1 startX_val = startX_val + 1 print(display_list)``` #useful commands that convert a list into a string ''.join(str(value) for value in display_list) ''.join(display_list) --- ``` ``` dna = 'ACGTCGTTTACGTACGGGAGTCGTACGATCCTCCCGTAGCTCGGGATCGTTTTATCGTAGCGGGAT' #translate dna into rna rna= dna.replace('T','U') #group every 3 rna sequence start=0 end=3 genetic_code=[] while end<len(rna): code_single=rna[start:end] genetic_code.append(amino_acids[code_single]) end=end+3 start=start+3 print(genetic_code) #### Write a function that calculates the GC content of a DNA string dna_string='acgtcgt' def gc_content(): content_g=dna_string.count('g') content_c=dna_string.count('c') print((content_g+content_c)/len(dna_string)) gc_content() --- ```python dna = 'ACGTCGTTTACGTACGGGAGTCGTACGATCCTCCCGTAGCTCGGGATCGTTTTATCGTAGCGGGAT' def gc_content(): dna_gc = ((dna.count('G') + dna.count('C'))/len(dna))*100 print(dna_gc) gc_content() ``` --- ``` dna_sample = "aattcgatcggggtacccagataccatagacatagacataaatggac" dna_sample = dna_sample.upper() def percent_GC(gene_name, gene_seq): percent_GCs = (gene_seq.count("G") + gene_seq.count("C"))/len(gene_seq) percent_GCs = percent_GCs*100 return percent_GC, print(f"The percent of GCs in {gene_name} is {percent_GCs}%") percent_GC("dna", dna_sample) ``` ```python def GCcont(genome): genome = genome.lower() return("%d" % ((genome.count("g")+genome.count("c"))/len(genome)*100)+"%") print(GCcont(dna)) ``` #### Write a function that generates a random string of DNA of random length ```python def randomDna(mins, maxs):#function name and arguments dna_sequence = ""#setting up str to save sequence length = random.randint(mins,maxs)#randomising length of string from min to max nucleotides = ['a','t','g','c']# pool of nucliotide options for i in range(length):#irritates length number of times dna_sequence += random.choice(nucleotides)#adds random nuclitoide from pool into sequence return dna_sequence#returns the sequence print(randomDna(10,100))#activates the function ``` ``` nucleotides = ["A", "C", "G", "T"] probs_of_nucleotides = [0.25, 0.25, 0.25, 0.25] def random_dna(max_val): rand_dna = "" random_length_dna = random.randint(0, max_val) for i in range(random_length_dna): random_nucleotide = random.choice(nucleotides, p = probs_of_nucleotides) rand_dna += random_nucleotide return rand_dna random_dna(100) ``` ```python= def randomdnastring(): from numpy import random dna_state = ['A', 'T', 'G', 'C'] dnalist = [] for letter in range(1,21): rletter = random.choice(dna_state) dnalist.append(rletter) print(dnalist) randomdnastring() ``` #### Write a function that generates a random string of DNA of random a random length: use optional arguments to set the length of the strings and the probabilities of the nucleotides. ``` python = nucleotides = ["A", "C", "G", "T"] building_dna = "" def random_dna(max_val = 100, probs_of_nucleotides = [0.25, 0.25, 0.25, 0.25]): #defines function with optional parameters global building_dna length_of_dna = random.randint(0, max_val) #picks random dna length given the max inputted for i in range(length_of_dna): random_nucleotide = random.choice(nucleotides, p = probs_of_nucleotides) #choses a random nucleotide given probs building_dna += random_nucleotide #adds nucleotide to dna print(f"{building_dna}, {length_of_dna}") #prints dna and length random_dna(140) ``` --- ```python def randomDna(mins = 1, maxs=1000, probabilities = [0.25,0.25,0.25,0.25]):#function name and arguments dna_sequence = ""#setting up str to save sequence length = random.randint(mins,maxs)#randomising length of string from min to max nucleotides = ['A','C','G','T']# pool of nucliotide options for i in range(length):#irritates length number of times dna_sequence += random.choice(nucleotides, p =probabilities)#adds random nuclitoide from pool into sequence return dna_sequence#returns the sequence Dna = randomDna(21,23, [0.33,0.33,0.14,0.20])#activates the function print(Dna) print(len(Dna)) ``` ```python def newdnastring(a_prob = 0.25, t_prob = 0.25, g_prob = 0.25, c_prob= 0.25, provided_length = 15): #probablities stated as first 4 optional variables, provided length also optional (deafult 15) from numpy import random dna_state = ['A', 'T', 'G', 'C'] dnalist = [] #letters should be added to the list above for letter in range(0, provided_length): #setting the variable that's added to dnalist rletter = random.choice(dna_state, p = (a_prob, t_prob, g_prob, c_prob)) dnalist.append(rletter) #creating a string from the list, and printing it print(''.join(str(value) for value in dnalist)) #just examples of use, not necessary newdnastring(provided_length = 30) newdnastring(0.5, 0.2, 0.1, 0.2, 15) ``` from numpy import random nucleartide_op=['a','t','c','g'] dna_sequence=[] def dna_random_string(dna_length, dna_probabilities): if dna_length!=-1: for dna in range(0,dna_length): if dna_probabilities!=-1: dna_sequence.append(random.choice(nucleartide_op,p=dna_probabilities)) else: dna_sequence.append(random.choice(nucleartide_op)) else: dna_length = random.randint(1,100) for dna in range(0,dna_length): if dna_probabilities!=-1: dna_sequence.append(random.choice(nucleartide_op,p=dna_probabilities)) else: dna_sequence.append(random.choice(nucleartide_op)) print(''.join(dna_sequence)) dna_random_string() --- ```python from numpy import random def rand_dna(end_rand, start_rand=0, a_prob=0.25, t_prob=0.25, c_prob=0.25, g_prob=0.25): dna_length = random.randint(start_rand, end_rand)#Decides DNA length based on the parameters given dna = ''#Empty string nucleotides = ['a', 't', 'c', 'g'] one_fourthprob = [a_prob,t_prob,c_prob,g_prob]#Provides the probabilities based on the parameters given for i in range (0,dna_length): dna += random.choice(nucleotides, p=one_fourthprob) print(dna) #Runs the function rand_dna(100,5) ``` --- #### Challenge: Write a function that generates a random protein of length L ```python= amino_acids_val = ['I', 'I', 'I', 'M', 'T', 'T', 'T', 'T', 'N', 'N', 'K', 'K', 'S', 'S', 'R', 'R', 'L', 'L', 'L', 'L', 'P', 'P', 'P', 'P', 'H', 'H', 'Q', 'Q', 'R', 'R', 'R', 'R', 'V', 'V', 'V', 'V', 'A', 'A', 'A', 'A', 'D', 'D', 'E', 'E', 'G', 'G', 'G', 'G', 'S', 'S', 'S', 'S', 'F', 'F', 'L', 'L', 'Y', 'Y', '_', '_', 'C', 'C', '_', 'W'] def aminoacids(length): # variable to save number of tries tries = 0 #while loop to go on forver unless loop is broken while True: #restart k evry new try k = "" #first random nuclaic acid k+= random.choice(amino_acids_val) #if first nuclaic acid is M continue if it isnt restart if k[0] == "M": #will stop the moment a stop nuclaic acid is in the protein while '_'not in k: #ands amino acids k+= random.choice(amino_acids_val) #force function to stop if length is correct/ wont get to it if there are stop nuclaic acids if len(k)==length: return(k,tries) #add try if anything goes wrong and restart tries += 1 print(aminoacids(10)) ``` ```python = def generate_random_protein(amino_acids, L = 50): stop_codons = ["UAA", "UAG", "UGA"] trials = 0 protein = "" while len(protein) < L: codon = random.choice(list(amino_acids.keys())) #takes a random codon from the amino_acids dictionary amino_acid = amino_acids[codon] #defines amino_acid as the the letter from the dictionary if amino_acid == "M": #if start codon protein += amino_acid # add amino acid to the protien elif codon in stop_codons: #if stop codon, stop trials += 1 #adds to trials bc didn't add to protien protein = "" #reset protien elif len(protein) >= 1 and protein[0] == "M": #if after start codon, normal, and starts with an M protein += amino_acid #add return protein, trials generate_random_protein(amino_acids, 100) #are 90 and L = 90 the same as parameters? ``` ```python= def random_amino_acids(length): nucleotides = ['A','U','C','G'] start_codon = 0 current_length = 0 amino_sequence = '' while length > current_length: current_length = current_length+1 selected_acid = amino_acids[random.choice(nucleotides)+random.choice(nucleotides)+random.choice(nucleotides)] if selected_acid == 'M': start_codon = 1 if start_codon == 1: amino_sequence = amino_sequence+selected_acid return amino_sequence random_amino_acids(100) ``` ## Baby names #### Use the pd.read_csv command to import the "StateNames.csv" file into a data frame and name it "state" ```python states = pd.read_csv("data/StateNames.csv",sep=',',index_col=0, dtype= {"Name": str, "Year": "object", "Gender": object, "State": str,"Count":int}) ``` --- ``` state=pd.read_csv('data/StateNames.csv', sep=',',index_col=0, dtype={"Name":str, "Year": object, "Gender": object,"State":str,"Count":int}) state.shape ``` ## STATS I Notebook #### Assume that we are going to enter the colors alphabetical order So ```` Tube_0 = [5,14,5,12,7,3] Tube_1 = [9,6,7,10,6,5] Tube_2 = [] Tube_3 = [10, 8, 3, 9, 4, 9] Tube_4 = [6, 10, 15, 8, 5, 4] Tube_5 = [10, 7, 7, 11, 2, 8] Tube_6 = [] Tube_7 = [9,11,7,9,6,5] ```` # How would you make a plot for all of the tubes in the class? # Hint - to give a title to a plot use the plot.title() function ```python = Tube_0 = [22, 13, 21, 18, 8, 17] Tube_1 = [9, 6, 7, 10, 6, 5] Tube_3 = [10, 8, 3, 9, 4, 9] Tube_4 = [6, 10, 15, 8, 5, 4] Tube_5 = [10, 7, 7, 11, 2, 8] Tube_7 = [9, 11, 7, 9, 6, 5] def plot_tube(tube_name_string, tube_name): observations = tube_name #sets observation as the list of inputs (could be a list or a name like Tube_7) n = len(observations) index = np.arange(n) #6 bars to represent 6 observations in the list colors = ['blue','brown','green', 'orange', 'red', 'yellow'] #x axis setting, things to plot, colors should be same as list, labelbars as colors and center the bars plot_1 = plot.bar(index, observations, color = colors, tick_label = colors, align = 'center') plot.title(f"Plot of tube {tube_name_string}") #sets the name of the tube data using user input plot.show(plot_1) #calls the function to display all of the tubes plot_tube("Tube_0", Tube_0) plot_tube("Tube_1", Tube_1) plot_tube("Tube_3", Tube_3) plot_tube("Tube_4", Tube_4) plot_tube("Tube_5", Tube_5) plot_tube("Tube_7", Tube_7) plot_tube("Random tube", [10, 4, 6, 8, 7, 11]) #must be a list of 6 ints to work ``` ```python= tube_list = {'tube_0':[5,14,5,12,7,3],'tube_1':[9,6,7,10,6,5],'tube_2':[],'tube_3':[10,8,3,9,4,9], 'tube_4':[6,10,15,8,5,4],'tube_5':[10, 7, 7, 11, 2, 8],'tube_6':[],'tube_7':[9,11,7,9,6,5]} x = 0 for tube in tube_list: observations = tube_list['tube_''%x'%x] if observations == []: print('no data for tube''%x'%x) else: n = len(observations) index = np.arange(n) colors = ['blue', 'brown', 'green', 'orange', 'red', 'yellow'] plot_1 = plot.bar(index, observations, color=colors, tick_label=colors, align='center') plot.title('tube_''%x'%x) plot.show(plot_1) x = x+1 ``` ```python def make_plot(pool,pool_name): t = plot.title(pool_name) observations = pool n = len(observations) index = np.arange(n) colors = ['blue', 'brown', 'green', 'orange', 'red', 'yellow'] plot_1 = plot.bar(index,observations,color=colors,tick_label=colors,align='center') plot.show(plot_1) make_plot(Tube_0,"Tube_0") make_plot(Tube_1,"Tube_1") make_plot(Tube_3,"Tube_3") make_plot(Tube_4,"Tube_4") make_plot(Tube_5,"Tube_5") make_plot(Tube_7,"Tube_7") ``` ```python= def plot_points(tube_ID, plot_name): observations = tube_ID n = len(tube_ID) index = np.arange(n) colors = ['blue', 'brown', 'green', 'orange', 'red', 'yellow'] plot_1 = plot.bar(index, observations, color=colors, tick_label=colors, align='center') plot.title(plot_name) plot.xlabel('Colors') plot.ylabel("Amount of MnMs") plot.show(plot_1) plot_points(Tube_0, 'Tube 0') plot_points(Tube_1, 'Tube 1') plot_points(Tube_3, 'Tube 3') plot_points(Tube_4, 'Tube 4') plot_points(Tube_5, 'Tube 5') plot_points(Tube_7, 'Tube 7') ``` import numpy as np import matplotlib.pyplot as plt mm_data = { 1: [5, 14, 5, 12, 7, 3], 2: [9, 6, 7, 10, 6, 5], 3: [10, 8, 3, 9, 4, 9], 4: [6, 10, 15, 8, 5, 4], 5: [10, 7, 7, 11, 2, 8], 6: [9, 11, 7, 9, 6, 5] } ``` mm_number = 1 color = ['blue', 'brown', 'green', 'orange', 'red', 'yellow'] def mm_count(observation_count): h = len(observation_count) index = np.arange(h) plot.bar(index, observation_count, color=color, tick_label=color, align='center') plot.show() while mm_number < 7: mm_count(observation_count=mm_data[mm_number]) mm_number += 1 ```

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully