Mathematical Cheatsheet == # General Mathematics ## Quadratic equation Given a quadratic equation of form : $ax^2+bx+c = 0$ We compute the determinant : $$\Delta = b^2-4ac$$ If $\Delta >= 0$ then the quadratic equation admits 2 solutions : $$x = {-b \pm \sqrt{\Delta} \over 2a}$$Else, if $\Delta = 0$ then the quadratic equation admits only 1 solution : $$x = {-b \over 2a}$$If $\Delta < 0$ then the quadratic equation admits no solutions in $\Bbb{R}$ but in $\Bbb{C}$ we have : $$x = {-b \pm i\sqrt{-\Delta} \over 2a}$$ ## Cubic equation ## Sums and Products $\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}$ $\sum_{i=0}^n i = \frac{n(n+1)}{2}$ - Telescopic sum. $\sum_{i=p}^q (a_{i+1}-a_{i}) = (a_{q+1}-a_{p})$ - Telescopic products. $\prod_{i=p}^q \frac{a_{i+1}}{a_{i}} = \frac{a_{q+1}}{a_{p}}$ - Newton's Factorisation. for(a,b) in $\Bbb{R}$ and n in $\Bbb{N}$ $(a+b)^{n} = \sum_{k=0}^n\dbinom{n}{k}a^{k}b^{n-k}$ - Factorisation $a^{n+1}-b^{n+1} = (a-b)\sum_{k=0}^n a^{k}-b^{n-k}$ ## Complex numbers For z in $\Bbb{C}$ $z = x + iy$ $x = Re(z)$ and $y = Im(z)$ ### Additions and Multiplications. $z+z' = (x+x')+i(y+y')$ $zz' = (xx'-yy') + i(xy'+ yx')$ $\lvert z \rvert$ = $\sqrt{Re(z)^{2}+Im(z)^{2}}$ $\lvert z+z' \rvert$ $\leq$ $\lvert z \rvert$ + $\lvert z' \rvert$ # Modular Arithmetic For a, b $\in$ $\Bbb{N}$ $a \equiv b \pmod p$ if and only if $a -b$ can be divided by p In this case, k $\in$ $\Bbb{N}$ such that $a = b + kn$ ## Euler's theorem Given $n$ $\in$ $\Bbb{Z}$ and $a$ $\in$ $\Bbb{Z}$ with $gcd(a, n) = 1$ then $${a^\phi(n)} \equiv 1 \pmod n$$ ## Fermat's little theorem Let a $\in$ $\Bbb{Z}$ and p a prime number $${a^p} \equiv a \pmod p$$ ## RSA For $\forall$p, q $\in$ $\Bbb{N}$ (note : p and q have to be coprimes numbers) $$n = p * q$$ ## Discrete logarithm # Linear algebra