What's the deal with the posteriors.pdf plots for setariaWT?
Learn More →
query.trait.data()
also shows 3.75, 0.3, 12 beta.o ~ dlnorm (3.75, 11.1111111111111)#BBB
. This is just because BUGS paramaterizes distributions differentllyOutput of query.trait.data()
:
2022-09-26 19:03:17 INFO [query.trait.data] : Vcmax
2022-09-26 19:03:17 INFO [query.trait.data] :
Median Vcmax : 24.367
This is pretty different from median(rlnorm(100000, 3.75, 0.3))
(42.61)
Output of meta analysis:
------------------------------------------------
starting meta-analysis for:
Vcmax
------------------------------------------------
prior for Vcmax
(using R parameterization):
lnorm(3.75, 0.3)
data max: 33.587
data min: 14.572
mean: 24
n: 33
stem plot of data points
The decimal point is at the |
14 | 67
16 | 3993
18 | 024
20 | 80567
22 | 14
24 | 49069
26 | 235
28 | 3
30 | 06758
32 | 486
stem plot of obs.prec:
The decimal point is 2 digit(s) to the left of the |
0 | 00000000111111111111222234
0 | 55
1 |
1 | 689
2 |
2 |
3 | 3
3 |
4 | 2
Read 28 items
Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph information:
Observed stochastic nodes: 66
Unobserved stochastic nodes: 11
Total graph size: 231
Initializing model
|++++++++++++++++++++++++++++++++++++++++++++++++++| 100%
|**************************************************| 100%
Iterations = 1002:4000
Thinning interval = 2
Number of chains = 4
Sample size per chain = 1500
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
Mean SD Naive SE Time-series SE
beta.ghs[2] 5.8939 6.527 0.084269 0.605218
beta.o 22.5960 3.908 0.050453 0.524178
beta.site[1] -1.1988 3.573 0.046125 0.515177
beta.site[2] -3.6076 4.346 0.056111 0.571501
beta.site[3] 1.0050 4.721 0.060941 0.312704
beta.trt[2] 9.0024 1.685 0.021759 0.051840
beta.trt[3] -3.2650 2.429 0.031353 0.038937
beta.trt[4] 0.2434 1.813 0.023410 0.044398
sd.site 4.5082 5.840 0.075394 0.576771
sd.trt 7.9614 8.151 0.105231 0.106347
sd.y 4.5453 0.318 0.004106 0.004568
2. Quantiles for each variable:
2.5% 25% 50% 75% 97.5%
beta.ghs[2] -11.7959 3.7225 7.6125 9.9905 14.4939
beta.o 17.7133 19.9710 21.3688 24.4605 32.3529
beta.site[1] -10.7692 -2.1732 -0.0981 0.5913 3.7577
beta.site[2] -14.5592 -5.9696 -1.9854 -0.2457 0.8886
beta.site[3] -7.2625 -0.7105 0.1354 2.0609 13.1585
beta.trt[2] 5.7321 7.8513 8.9890 10.1680 12.2848
beta.trt[3] -7.9935 -4.8725 -3.2776 -1.6559 1.5000
beta.trt[4] -3.2401 -0.9942 0.2183 1.4505 3.7676
sd.site 0.1239 0.7684 2.4657 6.1013 20.1850
sd.trt 2.8689 4.6978 6.4385 9.1335 22.2883
sd.y 3.9386 4.3262 4.5382 4.7598 5.1978
2022-09-26 19:17:33 WARN [check_consistent] :
CHECK THIS: Vcmax data and prior are inconsistent:
2022-09-26 19:17:33 INFO [check_consistent] :
Vcmax P[X<x] = 0.0107234090491143
Learn More →
query.trait.data()
reports the same beta.o ~ dlnorm (8.4, 1.23456790123457)#BBB
This is just because BUGS paramaterizes distributions differentllyOutput of query.trait.data()
2022-09-26 19:03:17 INFO [query.trait.data] : cuticular_cond
2022-09-26 19:03:17 INFO [query.trait.data] :
Median cuticular_cond : 30546
median(rlnorm(100000, 8.4, 0.9))
= 4431.404, an order of magnitude less
Output of meta analysis:
################################################
------------------------------------------------
starting meta-analysis for:
cuticular_cond
------------------------------------------------
prior for cuticular_cond
(using R parameterization):
lnorm(8.4, 0.9)
data max: 105286
data min: 157
mean: 32900
n: 33
stem plot of data points
The decimal point is 4 digit(s) to the right of the |
0 | 084556799
2 | 1111390112225599
4 | 36625
6 | 22
8 |
10 | 5
stem plot of obs.prec:
The decimal point is 9 digit(s) to the left of the |
0 | 000000000000000000000000000000000
Read 28 items
Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph information:
Observed stochastic nodes: 66
Unobserved stochastic nodes: 11
Total graph size: 231
Initializing model
|++++++++++++++++++++++++++++++++++++++++++++++++++| 100%
|**************************************************| 100%
Iterations = 1002:4000
Thinning interval = 2
Number of chains = 4
Sample size per chain = 1500
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
Mean SD Naive SE Time-series SE
beta.ghs[2] 1.825e-01 10.1 0.1304 0.1299
beta.o 1.553e+04 10486.2 135.3768 1007.7992
beta.site[1] 2.600e+04 11239.3 145.0992 1010.9316
beta.site[2] 7.271e+03 10597.0 136.8070 937.4097
beta.site[3] 8.260e+03 10811.5 139.5762 951.8293
beta.trt[2] -1.115e+04 4717.3 60.9001 144.4650
beta.trt[3] -3.642e+03 5625.9 72.6298 93.2426
beta.trt[4] 2.564e+03 4297.7 55.4836 91.3477
sd.site 2.490e+04 21849.1 282.0704 1034.1102
sd.trt 1.104e+04 9343.6 120.6258 154.6123
sd.y 1.262e+04 505.0 6.5189 6.5158
2. Quantiles for each variable:
2.5% 25% 50% 75% 97.5%
beta.ghs[2] -19.16 -6.726 0.177 7.072 19.84
beta.o 1203.97 5806.015 14446.242 24365.430 35362.76
beta.site[1] 5083.49 16996.834 27032.461 35526.081 43717.37
beta.site[2] -12779.60 -1089.941 7629.391 15865.911 25207.22
beta.site[3] -11850.49 -215.555 8666.317 16828.692 27305.50
beta.trt[2] -20145.56 -14353.173 -11193.095 -8054.345 -688.12
beta.trt[3] -15721.92 -7243.949 -3241.985 27.388 6609.38
beta.trt[4] -5969.73 -140.868 2530.423 5330.714 11091.92
sd.site 5112.03 12145.340 19794.892 30371.012 76585.94
sd.trt 1897.80 6038.866 8948.105 13057.602 33412.90
sd.y 11656.55 12278.028 12616.671 12960.389 13629.63
2022-09-26 19:17:33 INFO [check_consistent] :
OK! cuticular_cond data and prior are consistent:
2022-09-26 19:17:33 INFO [check_consistent] :
cuticular_cond P[X<x] = 0.896820628855657
post
and approx
in these plots?Hi ____,
Sep 20, 2024Matt "plugged in" rounding to correct precision--only applied to new data (since the last month or so) Part of azmetr could be checking for correct precision Matt has a place online where we can edit the measured variables and it will propogate to derived variables (we think). Split tasks: modeling and workflow automation Phase one is alert Jeremy of extreme values and imputed values (a daily report table published with Quarto, for example) Could fit multivariate model as additional step (can't be raining all day and have high solar radiation) Could detect things in derived variables that we don't see in measured variables beause of transformations? Report refinements Report currently uses all data for rule-based validations and just one day for forecast-based validations. This doesn't make sense. Need some flexibility in terms of what days are being viewed in the report and consistency between types of validations.
Jan 30, 2023The transect that Kristina sampled contains: Southern Coastal Plain: https://bplant.org/region/134 longleaf pine flatwoods and savannas richer forests with slash pine, pond pine, pond cypres, american sweetgum, southern magnolia, laurel oak, white oak, american beech (i.e. mix of evergreen, evergreen hardwood, and deciduous hardwood PFTs) Floodplains with bald cypres, pond cypres, water tupelo, sweetgum, green ash, water hickory ("temperate.Hydric" PFT??) Florida scrub monoculture pine plantations
Jan 11, 2023NOTE: I never got this to work. The docker containers don't run for reasons I don't understand. There are only 2 possibilities currently for ED versions because there is only one release tag---v.2.2.0. So its either that or the development version "git". If you want a specific commit, you'll have to edit the code in the Dockerfile to git checkout a specific SHA. Why would you want to do this? When running ED2 models on the HPC, you might want to: use the development version of ED2 when the container on docker hub isn't updated use a version of PEcAn.ED2 other than the develop branch or the latest release (e.g. a PR you're working on) use some custom combination of PEcAn and ED2 versions
Nov 1, 2022or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up