SpanNER: Named Entity Recognition as Span Prediction
acl2021
重點
- 探討 span prediction model 相比於 sequence labeling model 的優缺點
- Span prediction model 不只可以自己當 NER 使用,還能作為一種 combiner(ensemble),用於整合多模型的輸出
內容
以下為兩種 NER 模型架構, Sequence labeling SeqLAB
和 Span predictionSpanNER
SeqLAB
單純的對 token 做分類
SpanNER
先枚舉所有可能的 span ,再對其做分類
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
|
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
|
預訓練模型的發展增進了 nlp 任務的成績,也改變了學者們如何去 formulate(制定/規定) 任務。
- NER 任務從以前的 token level 分類(例如 bio),轉變到 span-level prediction,把任務視為 question answering / span classification / dependency parsing task。
雖然 span prediction-base system 已經發展的不錯,但對於其 architectural bias 還是有待去研究。例如:
what are the complementary(互補性) advantages compared with SeqLAB frameworks and how to make full use of them?
architectural bias 的意思根據 這篇 所表示
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
我們首先研究了把 span prediction 概念應用在 NER 任務上的優缺點,詳細的分析 SpanNER
系統和 SeqLAB
系統,找出他們間的互補優勢,例如:
- SeqLAB-based model 擅長 long and with low label consistency 的實體
- SpanNER 擅長 sentences with more Out-of-Vocabulary (OOV) words and entities with medium length
SpanNER
不只能當成 NER 系統,也能當作其他系統的 combiner(整合多個 NER 模型),相比於傳統的ensemble (投票)系統有以下優勢:
- 大多的 NER combiner 需要做特徵工程和額外知識
- 不需要額外的訓練資料且很靈活
- 整合了(1) 最佳化 NER 模型和 (2) ensemble learning for combiner 的步驟 ,過去的方法兩者是分開的。
此外,實做了 154 個系統在 11 個資料集上並且架了網站,能在上面方便的檢視哪些模型可以一起合作。
SpanNER as NER System
基於 span 方式的 NER 模型有以下 3 個模組,示意圖可看先前段落
Token representation layer
給予輸入 ,輸出 representation 結果
Span representation layer
枚舉所有可能的 span,例如長度為 3 的句子 London is beautiful
Span 集合 (start,end) 就有 ,除了 (1,1) 是 LOC
,其他都是 O
Span 的表示有以下幾種
- Boundary embedding 把 start/end token 串接起來
- Span length embedding 在上一點的 feature 加上 length embedding ,
Span prediction layer
有了 span representation 後將其輸入 softmax 分類層,score(-) 是可學習的分類器
Heuristic Decoding
對於那些重疊的 span ,只保留最高機率的 span
實驗
Effectiveness of Model Variants
做了以下幾種組合並分析成效,證實 span length mebedding
和 heuristic decoding
是有效的
- generic:
boundary embedding
boundary embedding
+ heuristic decoding
boundary embedding
+ span length embedding
boundary embedding
+ span length mebedding
+ heuristic decoding
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
Analysis of Complementarity 互補性
以 CONLL-2003(EN) 作為資料集來分析
- 代表 5 種最強的
SeqLAB
模型
- 綠色代表 SeqLAB 比 SpanNER 好,粉色則相反
- 作者把 testset ,依照特徵大小分成4種 bucket (xs,s,L,XL)
特徵有以下幾種 (OOV=out of voc)
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
eCon 參數越高代表在訓練資料中,越常出現特定的實體被標記為特定的 label
在 SpanNER 使用 generic 配置下 ,SeqLAB 幾乎是全面勝出,尤其是在
- entities are long (eLen)
- lower label consistency (oDen) 的情況下。
但 SpanNER
在滿配置情況下,除了在 low label consistency 情況下都更優於 SeqLAB
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
SpanNER as System Combiner
在和其他 SeqLAB
模型合作時,可由以下方式 ensemble 來決定當前的 span 為哪個類別
- 首先讓 span 模型輸出不同類別的機率值
- 讓其他模型(基於 SeqLAB) 直接幫此 span 做分類,拿取對應類別的機率
- 把他們的機率值加起來取最大的
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
SeqLAB 跟 SpanNER 在資料集上的對比
sequence labeling 模型的各種組合 和 SpanNER 做相比
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
SpanNER combiner vs 傳統 ensemble
以下實驗都有用 5-fold crosss validation,數據表明 spanNER 用於模型 ensemble 是有效的
縮寫 |
全名 |
解釋 |
VM |
Majority voting |
All the individual classifiers are combined into a final system based on the majority voting. |
VOF1 |
Weighted voting base on overall F1-score |
The taggers are combined according to the weights, which is the overall F1-score on the testing set. |
VCF1 |
Weighted voting base on class F1-score |
Also weighted voting, the weights are the categories’ F1-score |
SVM |
Support Vector Machines |
a supervised machine learning algorithm, which can train quickly over large datasets. Therefore, the ensemble classifier is usually SVM. |
RF |
Random Forest |
A common ensemble classifier that randomly selects a subset of training samples and variables to make multiple decision trees |
XGB |
Extreme Gradient Boosting |
XGB is an ensemble machine learning algorithm. It is based on the decisiontree and the gradient boosting decision |
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
在更多資料集上分析
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →
如同前面熱力圖的分析,這次分析 SpanNER combiner 和 other combiner 的對比
- 都是在 CONLL-2003 dataset
- 在 combiners 的對比時,綠色代表 SpanNER 比較好
Image Not Showing
Possible Reasons
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →