plot_wb()
plot_wb
with save optiontrain_dsd
TODO:
val_acc = 0.762
pipreqs /project/path
-> Generate requirements.txt based on import.MobilenetV2 dsd:
previous ccl: same perf with or w/o DSD
for each case, report quality (val loss | F1-score) and size (MB) indicators
mlruns/
folderGo to 19-03-2021/
Depending on which framework you want, run:
virtualenv lrde-env-[pytorch|tf2] && source lrde-env-[pytorch|tf2]/bin/activate && pip install -r requirements-[pytorch|tf2].txt
If docker container container-lrde-19-03-2021
already exists:
sudo docker ps -a
and copy CONTAINER_ID
sudo docker start CONTAINER_ID
Else:
mlruns/
folder
sudo docker pull 3outeille/lrde-2021:19-03-2021
sudo docker run -d --name container-lrde-19-03-2021 3outeille/lrde-2021:19-03-2021 tail -f /dev/null
sudo docker cp container-lrde-19-03-2021:/experiments/ .
Run ./recover_mlruns.sh [pytorch|tf2]
Stop docker container
sudo docker ps -a
and copy CONTAINER_ID
sudo docker stop CONTAINER_ID
You can now use mlflow on your browser.
cd src/[pytorch|tf2] && mlflow ui
Download pytorch-mlruns to 19_3
Just clean all path to make it work in local from 19_03_2021
and build an image: /home/sphird/Document/19_03_2021/src/[tf2]