![image](https://hackmd.io/_uploads/Hk-RKknV0.png) Consider the block diagram above which descibes the evolution of a point $(x, y) \in \mathbb{N}\times\mathbb{N}$. Suppose $\Delta$ is drawn from a random distribution with values spanning $[0, 2\pi)$. What happens to the value of the radius (`r`) over time? First, I'll show the radius never increases (Lemma 1). Then, I'll show for all possible values of the radius, there exists $\Delta$ which results in the radius decreasing (Lemma 4). Thus, given sufficent time the radius goes to zero. **Lemma 1**: The radius never increases. $$ \begin{aligned} r_n &= \sqrt{x_n^2+y_n^2} \\ &= \sqrt{(r_n\cos(\theta))^2 + (r_n\sin(\theta))^2} \\ &= r_n\sqrt{\cos(\theta)^2 + \sin(\theta)^2} \\ &= r_n\sqrt{\cos(\theta+\Delta)^2 + \sin(\theta+\Delta)^2} \quad\text{(by Pythagorean identity)} \\ &= \sqrt{(r_n\cos(\theta+\Delta))^2 + (r_n\sin(\theta+\Delta))^2} \\ &\geq \sqrt{\lfloor r_n\cos(\theta+\Delta)\rfloor^2 + \lfloor r_n\sin(\theta+\Delta)\rfloor^2} \\ &= r_{n+1} \end{aligned} $$ **Lemma 2**: If $x\not\in\mathbb{N}$, then $\lfloor x^2\rfloor\lt x^2$. _Proof_. If $x\not\in\mathbb{N}$, then $x$ has a non-zero decimal component, so flooring $x$ decreases its magnitude. **Lemma 3**: If $x$ is not irrational and $k$ is irrational, then $x\times k \not\in \mathbb{N}$. _Proof_. Because $x$ is not irrational, $x$ can be expressed as the ratio of two natural numbers $x\equiv\frac{a}{b}$. Suppose $x\times k\equiv m\in\mathbb{N}$, then $k\equiv \frac{m}{x} \equiv \frac{m}{\frac{a}{b}}\equiv \frac{m\times b}{a}$, but then $k$ is not irrational as it can be expressed as the ratio of two natural numbers. **Lemma 4**: For all $r_n$ there is a $\Delta$ for which $r_n\gt r_{n+1}$. _Proof_. $r_n$ is irrational or not. **Case I**: $r_n$ is irrational. Setting $\Delta = -\theta$: $$ \begin{aligned} r_n &= \sqrt{(r_n\cos(\theta+\Delta))^2 + (r_n\sin(\theta+\Delta))^2} \\ &= \sqrt{(r_n\cos(0))^2 + (r_n\sin(0))^2} \\ &= \sqrt{r_n^2} \\ &\gt \sqrt{\lfloor r_n\rfloor^2} \quad\text{(by Lemma 2)} \\ &= r_{n+1} \end{aligned} $$ **Case II**: $r_n$ is not irrational. Setting $\Delta=\frac{\pi}{4}-\theta$: $$ \begin{aligned} r_n &= \sqrt{(r_n\cos(\theta+\Delta))^2 + (r_n\sin(\theta+\Delta))^2} \\ &= \sqrt{(r_n\cos(\frac{\pi}{4}))^2 + (r_n\sin(\frac{\pi}{4}))^2} \\ &= \sqrt{(r_n\sqrt2/2)^2+(r_n\sqrt2/2)^2} \quad\text{(by Lemma 3, } r_n\frac{\sqrt2}{2}\not\in\mathbb{N}) \\ &\gt \sqrt{\lfloor r_n\sqrt2/2\rfloor^2 + \lfloor r_n\sqrt2/2\rfloor^2} \quad\text{(by Lemma 2)} \\ &= r_{n+1} \end{aligned} $$