---
tags: data_structure_python
---
# Product of Array Except Self <img src="https://img.shields.io/badge/-medium-orange">
Given an array nums of n integers where n > 1, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].
<ins>**Example:**</ins>
```
Input: [1,2,3,4]
Output: [24,12,8,6]
```
**Constraint:** It's guaranteed that the product of the elements of any prefix or suffix of the array (including the whole array) fits in a 32 bit integer.
**Note:** Please solve it without division and in O(n).
**Follow up:**
Could you solve it with constant space complexity? (The output array does not count as extra space for the purpose of space complexity analysis.)
# Solution
### Solution 1: First approach
```python=
class Solution:
def productExceptSelf(self, nums: List[int]) -> List[int]:
# O(n) in time complexity.
# O(n) in space complexity
n = len(nums)
left_cum_prod = [1]
for i in range(n-1):
left_cum_prod.append(left_cum_prod[i] * nums[i])
right_cum_prod = [1]
for i in range(n-1):
right_cum_prod.append(right_cum_prod[i] * nums[n-1-i])
return [left_cum_prod[i] * right_cum_prod[n-1-i] for i in range(n)]
```
### Solution 2: Second approach
```python=
class Solution:
def productExceptSelf(self, nums: List[int]) -> List[int]:
# O(n) in time complexity.
# O(1) in space complexity
n = len(nums)
left_cum_prod = [1]
for i in range(n-1):
left_cum_prod.append(left_cum_prod[i] * nums[i])
# Do it in-place instead of using right_cum_prod
right_cum_prod = 1
for i in range(1, n):
left_cum_prod[n-1-i] *= right_cum_prod * nums[n-i]
right_cum_prod *= nums[n-i]
"""
nums = [1, 2, 3, 4]
L = [1, 1, 2, 6]
L[3] = 6
L[2] = 2 * (1 * 4) = 8
L[1] = 1 * (4 * 3) = 12
L[0] = 1 * (12* 2) = 24
"""
return left_cum_prod
```
### Solution 3: Third approach
- Same idea as solution 2 but cleaner
```python=
class Solution:
def productExceptSelf(self, nums: List[int]) -> List[int]:
res = [1]
for i, elt in enumerate(nums[:-1]):
res.append(res[i] * elt)
R, n = 1, len(res)
for i, elt in enumerate(nums[::-1]):
res[n-1-i] *= R
R *= elt
return res
```