# 2022q1 Homework2 (quiz2)
contributed by < `cy023` >
> [測驗題](https://hackmd.io/@sysprog/linux2022-quiz2)
## 測驗 `1`
#### Version 1 : 可能 Overflow
先計算 `a + b` 再除以 `2`,但有機會在計算 `a + b` 時就發生溢位,導致計算結果錯誤。
```c
uint32_t average(uint32_t a, uint32_t b)
{
return (a + b) / 2;
}
```
#### Version 2 : 避免 Overflow
可以避免在 Version 1 中將 `a`, `b` 直接相加溢位而導致的錯誤。
但是使用這個函式前提是需要確保大數小數傳參傳入的順序。
例如呼叫 `average(100, 10);` 在函式內會計算 `(10 - 100)` 因為傳參的型態都是無號數 (unsigned) ,所以也會導致預期外的溢位。
```c
uint32_t average(uint32_t low, uint32_t high)
{
return low + (high - low) / 2;
}
```
試著將傳參改為 `int32_t` 型態想解決上述問題,但發現 `(high - low)` 為奇數時,大數小數傳入的順序不同,甚至可能導致輸出結果不同。
eg.
```c
uint32_t average21(int32_t low, int32_t high)
{
return low + (high - low) / 2;
}
```
- 當 `(high - low) < 0` 會將 `high - low` **向上取整**。
- 呼叫 `average21(100, 9);` 結果為 `55`
> 100 + (9 - 100) / 2 = 100 + (int32_t)-45.5 = 100 + (-45) = 55
- 當 `(high - low) > 0` 會將 `high - low` **向下取整**。
- 呼叫 `average21(9, 100);` 結果為 `54`
> 9 + (100 - 9) / 2 = 9 + (int32_t)45.5 = 9 + 45 = 54
#### Version 3 : 將 Version 1 改寫為 `bitwise` 操作
其中 `EXP1` 為 `a`, `b`, `1` (數字) 進行某種特別 bitwise 操作,限定用 OR, AND, XOR 這三個運算子。
```c
uint32_t average(uint32_t a, uint32_t b)
{
return (a >> 1) + (b >> 1) + (EXP1);
}
```
`(a >> 1)`, `(b >> 1)` 直接將 `a`, `b` 兩數值分別除以 2 (進行 `>>` 運算),考慮到 `a`, `b` 兩數值為 `uint32_t` 型態,若無法整除,會有小數被捨去。
如果 `a`, `b` 皆為奇數,計算 $\frac{a}{2}$ 與 $\frac{b}{2}$ ,分別會被捨去 0.5 (共捨去 1),因此計算平均時需要將 `a`, `b` 皆為奇數的情況下補回 1。
`a & 1` 運算可以檢查數字 `a` 的 LSB 是否為 1,等效於檢查 `a` 是否為奇數。
根據以上,`EXP1` 敘述,為當 `a`, `b` 都是奇數時需要補回的數,填入 `a & b & 1` 檢查 `a`, `b` 是不是都是奇數。
```c
uint32_t average(uint32_t a, uint32_t b)
{
return (a >> 1) + (b >> 1) + (a & b & 1);
}
```
#### Version 4 : `bitwise` 操作
其中 `EXP2` 和 `EXP3` 為 `a` 和 `b` 進行某種特別 bitwise 操作,限定用 OR, AND, XOR 這三個運算子。
```c
uint32_t average(uint32_t a, uint32_t b)
{
return (EXP2) + ((EXP3) >> 1);
}
```
參考[二進位加法](https://kopu.chat/%E4%BB%A5c%E5%AF%A6%E4%BD%9C%E4%BA%8C%E9%80%B2%E4%BD%8D%E5%8A%A0%E6%B3%95/)的概念。
- 先考慮 `a`, `b` 為 1 bit
- `a & b` 用於檢查 `a`, `b` 是不是同為 1,如果是則需要進位。
| a | b | a & b | Description |
|:-:|:-:| :---: | :---------: |
| 0 | 0 | 0 | a + b = 0 不需要進位 |
| 0 | 1 | 0 | a + b = 1 不需要進位 |
| 1 | 0 | 0 | a + b = 1 不需要進位 |
| 1 | 1 | 1 | a + b = 2 需要進位 |
- `a ^ b` 用於將兩數相加,但不會保留進位的資訊。
| a | b | a ^ b | Description |
|:-:|:-:| :---: | :---------: |
| 0 | 0 | 0 | a + b = 0 |
| 0 | 1 | 1 | a + b = 1 |
| 1 | 0 | 1 | a + b = 1 |
| 1 | 1 | 0 | a + b = 2 (需要進位變成 $10_b$)|
- 討論 `a`, `b` 為 `uint32_t` 型態
- 可以將 `a + b` 表示成相似題目表達式的,`((a & b) << 1) + (a ^ b)` (可以想成小學的直式加法,需要進位時,在比當前高一位的數字加一)。
- `(a + b) / 2` 可以表示成,`(((a & b) << 1) + (a ^ b)) >> 1`,簡化成 `(a & b) + (a ^ b) >> 1`
```c
uint32_t average(uint32_t a, uint32_t b)
{
return (a & b) + ((a ^ b) >> 1);
}
```
:::success
延伸問題:
- [x] 1. 解釋上述程式碼運作的原理
- [ ] 2. 比較上述實作在編譯器最佳化開啟的狀況,對應的組合語言輸出,並嘗試解讀 (可研讀 [CS:APP 第 3 章](https://hackmd.io/@sysprog/CSAPP-ch3))
- [ ] 3. 研讀 Linux 核心原始程式碼 [include/linux/average.h](https://github.com/torvalds/linux/blob/master/include/linux/average.h),探討其 [Exponentially weighted moving average (EWMA)](https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average) 實作,以及在 Linux 核心的應用
> 移動平均(Moving average),又稱滾動平均值、滑動平均,在統計學中是種藉由建立整個資料集合中不同子集的一系列平均數,來分析資料點的計算方法。
移動平均通常與時間序列資料一起使用,以消除短期波動,突出長期趨勢或周期。短期和長期之間的閾值取決於應用,移動平均的參數將相應地設置。例如,它通常用於對財務數據進行技術分析,如股票價格、收益率或交易量。它也用於經濟學中研究國內生產總值、就業或其他宏觀經濟時間序列。
:::
## 測驗 `2`
改寫〈[解讀計算機編碼](https://hackmd.io/@sysprog/binary-representation)〉一文的「不需要分支的設計」一節提供的程式碼 min,我們得到以下實作 (`max`):
```c
#include <stdint.h>
uint32_t max(uint32_t a, uint32_t b)
{
return a ^ ((EXP4) & -(EXP5));
}
```
- 當 `a > b`
`max` 需要回傳 `a` ,也就是 `a ^ 0` (任意數字對 `0` 作 XOR 操作,結果與原數值相同)
此時 `((EXP4) & -(EXP5))` 為 `0`
- 當 `a < b`
`max` 需要回傳 `b` ,也就是 `a ^ a ^ b` (`b` 對 `a` 作亮次 XOR 操作,結果為 `b`)
此時 `((EXP4) & -(EXP5))` 為 `a ^ b`
- 觀察 `((EXP4) & -(EXP5))` 結構。
- `EXP4` 填入 `a ^ b`
- `EXP5` 作為 `a`, `b` 兩數值比較的判斷
- 當 `a > b`
- `-(EXP5)` 要是 `0` ( $00000000000000000000000000000000_b$ )
- 當 `a < b`
- `-(EXP5)` 要是 `-1` ( $11111111111111111111111111111111_b$ )
- 取 `EXP5` 為 `a < b`
```c
#include <stdint.h>
uint32_t max(uint32_t a, uint32_t b)
{
return a ^ ((a ^ b) & -(a < b));
}
```
:::success
延伸問題:
- [x] 1. 解釋上述程式碼運作的原理
- [ ] 2. 針對 32 位元無號/有號整數,撰寫同樣 [branchless](https://en.wikipedia.org/wiki/Branch_(computer_science)) 的實作
- [ ] 3. Linux 核心也有若干 branchless / branch-free 的實作,例如 [lib/sort.c](https://github.com/torvalds/linux/blob/master/lib/sort.c):
```c
/*
* Logically, we're doing "if (i & lsbit) i -= size;", but since the
* branch is unpredictable, it's done with a bit of clever branch-free
* code instead.
*/
__attribute_const__ __always_inline
static size_t parent(size_t i, unsigned int lsbit, size_t size)
{
i -= size;
i -= size & -(i & lsbit);
return i / 2;
}
```
請在 Linux 核心原始程式碼中,找出更多類似的實作手法。請善用 git log 檢索。
:::
## 測驗 `3`
[輾轉相除法](https://zh.wikipedia.org/wiki/%E8%BC%BE%E8%BD%89%E7%9B%B8%E9%99%A4%E6%B3%95)
```c
#include <stdint.h>
uint64_t gcd64(uint64_t u, uint64_t v)
{
if (!u || !v) return u | v;
int shift;
for (shift = 0; !((u | v) & 1); shift++) {
u /= 2, v /= 2;
}
while (!(u & 1))
u /= 2;
do {
while (!(v & 1))
v /= 2;
if (u < v) {
v -= u;
} else {
uint64_t t = u - v;
u = v;
v = t;
}
} while (COND);
return RET;
}
```
:::spoiler 註: GCD 演算法
1. If both x and y are 0, gcd is zero $gcd(0,0) = 0$.
2. $gcd(x,0) = x$ and $gcd(0,y) = y$ because everything divides 0.
3. If x and y are both even, $gcd(x,y) = 2*gcd(\frac{x}{2}, \frac{y}{2})$ because $2$ is a common divisor. Multiplication with $2$ can be done with bitwise shift operator.
4. If x is even and y is odd, $gcd(x,y) = gcd(\frac{x}{2},y)$.
5. On similar lines, if x is odd and y is even, then $gcd(x,y) = gcd(x,\frac{y}{2})$. It is because $2$ is not a common divisor.
```c
while (!(u & 1))
u /= 2;
do {
while (!(v & 1))
v /= 2;
if (u < v) {
v -= u;
} else {
uint64_t t = u - v;
u = v;
v = t;
}
} while (COND);
```
將 `u` 保持
:::
1. If both x and y are 0, gcd is zero $gcd(0,0) = 0$.
2. $gcd(x,0) = x$ and $gcd(0,y) = y$ because everything divides 0.
```c
if (!u || !v)
return u | v;
```
3. If x and y are both even, $gcd(x,y) = 2*gcd(\frac{x}{2}, \frac{y}{2})$ because $2$ is a common divisor. Multiplication with $2$ can be done with bitwise shift operator.
```c
for (shift = 0; !((u | v) & 1); shift++) {
u /= 2, v /= 2;
}
```
其中 `!((u | v) & 1)` 判斷 `u`, `v` 是否同為偶數。`shift` 變數用來紀錄要將後續結果作幾次 `*2` (`<< 1`) 的運算。
4. If x is even and y is odd, $gcd(x,y) = gcd(\frac{x}{2},y)$.
5. On similar lines, if x is odd and y is even, then $gcd(x,y) = gcd(x,\frac{y}{2})$. It is because $2$ is not a common divisor.
:::success
延伸問題:
- [ ] 1. 解釋上述程式運作原理;
- [ ] 2. 在 x86_64 上透過 __builtin_ctz 改寫 GCD,分析對效能的提升;
- [ ] 3. Linux 核心中也內建 GCD (而且還不只一種實作),例如 [lib/math/gcd.c](https://github.com/torvalds/linux/blob/master/lib/math/gcd.c),請解釋其實作手法和探討在核心內的應用場景。
:::
<!--
`v`
`u << shift`
-->
## 測驗 `4`
參考 [Introduction to Low Level Bit Hacks](https://catonmat.net/low-level-bit-hacks)
> Bit Hack #7. Isolate the rightmost 1-bit.
> `y = x & (-x)`
>
> This bit hack finds the rightmost 1-bit and sets all the other bits to 0. The end result has only that one rightmost 1-bit set. For example, 01010100 (rightmost bit in bold) gets turned into 00000100.
```c
#include <stddef.h>
size_t improved(uint64_t *bitmap, size_t bitmapsize, uint32_t *out)
{
size_t pos = 0;
uint64_t bitset;
for (size_t k = 0; k < bitmapsize; ++k) {
bitset = bitmap[k];
while (bitset != 0) {
uint64_t t = EXP6;
int r = __builtin_ctzll(bitset);
out[pos++] = k * 64 + r;
bitset ^= t;
}
}
return pos;
}
```
`bitset & -bitset`
## 測驗 `5`
:::spoiler LeetCode 提交版本
```c
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
////////////////////////////////////////////////////////////
// #include "list.h"
struct list_head {
struct list_head *prev;
struct list_head *next;
};
static inline void INIT_LIST_HEAD(struct list_head *head)
{
head->next = head;
head->prev = head;
}
static inline void list_add(struct list_head *node, struct list_head *head)
{
struct list_head *next = head->next;
next->prev = node;
node->next = next;
node->prev = head;
head->next = node;
}
#define container_of(ptr, type, member) \
__extension__({ \
const __typeof__(((type *) 0)->member) *__pmember = (ptr); \
(type *) ((char *) __pmember - offsetof(type, member)); \
})
#define list_entry(node, type, member) container_of(node, type, member)
#define list_for_each_entry(entry, head, member) \
for (entry = list_entry((head)->next, __typeof__(*entry), member); \
&entry->member != (head); \
entry = list_entry(entry->member.next, __typeof__(*entry), member))
////////////////////////////////////////////////////////////
struct rem_node {
int key;
int index;
struct list_head link;
};
static int find(struct list_head *heads, int size, int key)
{
struct rem_node *node;
int hash = key % size;
list_for_each_entry (node, &heads[hash], link) {
if (key == node->key)
return node->index;
}
return -1;
}
char *fractionToDecimal(int numerator, int denominator)
{
int size = 1024;
char *result = malloc(size);
char *p = result;
if (denominator == 0) {
result[0] = '\0';
return result;
}
if (numerator == 0) {
result[0] = '0';
result[1] = '\0';
return result;
}
/* using long long type make sure there has no integer overflow */
long long n = numerator;
long long d = denominator;
/* deal with negtive cases */
if (n < 0)
n = -n;
if (d < 0)
d = -d;
bool sign = (float) numerator / denominator >= 0;
if (!sign)
*p++ = '-';
long long remainder = n % d;
long long division = n / d;
sprintf(p, "%ld", division > 0 ? (long) division : (long) -division);
if (remainder == 0)
return result;
p = result + strlen(result);
*p++ = '.';
/* Using a map to record all of reminders and their position.
* if the reminder appeared before, which means the repeated loop begin,
*/
char *decimal = malloc(size);
memset(decimal, 0, size);
char *q = decimal;
size = 1333;
struct list_head *heads = malloc(size * sizeof(*heads));
for (int i = 0; i < size; i++)
INIT_LIST_HEAD(&heads[i]);
for (int i = 0; remainder; i++) {
int pos = find(heads, size, remainder);
if (pos >= 0) {
while (pos-- > 0)
*p++ = *decimal++;
*p++ = '(';
while (*decimal != '\0')
*p++ = *decimal++;
*p++ = ')';
*p = '\0';
return result;
}
struct rem_node *node = malloc(sizeof(*node));
node->key = remainder;
node->index = i;
list_add(&node->link, &heads[remainder % size]);
*q++ = (remainder * 10) / d + '0';
remainder = (remainder * 10) % d;
}
strcpy(p, decimal);
return result;
}
```
:::
## 測驗 `6`
```c
/*
* ALIGNOF - get the alignment of a type
* @t: the type to test
*
* This returns a safe alignment for the given type.
*/
#define ALIGNOF(t) \
((char *)(&((struct { char c; t _h; } *)0)->M) - (char *)X)
```
請補完上述程式碼,使得功能與 GNU extension: [\_\_alignof\_\_](https://gcc.gnu.org/onlinedocs/gcc/Alignment.html) 等價。
將表示式拆解
```c
// 將地址 0x0 轉型為指向 struct { char c; t _h; } 型態的指標
// 也可以理解成把結構開頭對齊到地址 0x0
(struct { char c; t _h; } *)0
```
接著往外層看
```c
// 此處 `M` 應為 `struct { char c; t _h; }` 的成員
&((struct { char c; t _h; } *)0)->M
// M 填入 _h 可以得到型態 t 的地址,也就是相對於地址 0x0 的對齊
&((struct { char c; t _h; } *)0)->_h
```
最後
```c
// 這裡的 X 填入 0,可以被省略,不太清楚為何要這樣設計
((char *)(&((struct { char c; t _h; } *)0)->M) - (char *)X)
```
**延伸問題**
- \_\_alignof\_\_
```
$ grep -r "__alignof__" | wc -l
260
```
- [drivers/of/fdt.c](https://github.com/torvalds/linux/blob/master/drivers/of/fdt.c)
```c
/* Allocate memory for the expanded device tree */
mem = dt_alloc(size + 4, __alignof__(struct device_node));
```
- [kernel/sched/sched.h](https://github.com/torvalds/linux/blob/master/kernel/sched/sched.h)
```c
/*
* Helper to define a sched_class instance; each one is placed in a separate
* section which is ordered by the linker script:
*
* include/asm-generic/vmlinux.lds.h
*
* Also enforce alignment on the instance, not the type, to guarantee layout.
*/
#define DEFINE_SCHED_CLASS(name) \
const struct sched_class name##_sched_class \
__aligned(__alignof__(struct sched_class)) \
__section("__" #name "_sched_class")
```
- [include/linux/align.h](https://github.com/torvalds/linux/blob/master/include/linux/align.h)
```c
/* @a is a power of 2 value */
#define ALIGN(x, a) __ALIGN_KERNEL((x), (a))
#define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a))
#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask))
#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a)))
#define PTR_ALIGN_DOWN(p, a) ((typeof(p))ALIGN_DOWN((unsigned long)(p), (a)))
#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)
```
- [include/uapi/linux/const.h](https://github.com/torvalds/linux/blob/master/include/uapi/linux/const.h)
```c
#define __ALIGN_KERNEL(x, a) __ALIGN_KERNEL_MASK(x, (typeof(x))(a) - 1)
#define __ALIGN_KERNEL_MASK(x, mask) (((x) + (mask)) & ~(mask))
```
- [tools/testing/selftests/net/tcp_mmap.c](https://github.com/torvalds/linux/blob/master/tools/testing/selftests/net/tcp_mmap.c)
```c
#define ALIGN_UP(x, align_to) (((x) + ((align_to)-1)) & ~((align_to)-1))
```
- [tools/testing/selftests/vm/pkey-helpers.h](https://github.com/torvalds/linux/blob/master/tools/testing/selftests/vm/pkey-helpers.h)
```c
#define ALIGN_UP(x, align_to) (((x) + ((align_to)-1)) & ~((align_to)-1))
#define ALIGN_DOWN(x, align_to) ((x) & ~((align_to)-1))
#define ALIGN_PTR_UP(p, ptr_align_to) \
((typeof(p))ALIGN_UP((unsigned long)(p), ptr_align_to))
#define ALIGN_PTR_DOWN(p, ptr_align_to) \
((typeof(p))ALIGN_DOWN((unsigned long)(p), ptr_align_to))
```
:::success
延伸問題:
- [x] 1. 解釋上述程式碼運作原理
- [ ] 2. 在 Linux 核心原始程式碼中找出 [\_\_alignof\_\_](https://gcc.gnu.org/onlinedocs/gcc/Alignment.html) 的使用案例 2 則,並針對其場景進行解說
- [ ] 3. 在 Linux 核心源使程式碼找出 `ALIGN`, `ALIGN_DOWN`, `ALIGN_UP` 等巨集,探討其實作機制和用途,並舉例探討 (可和上述第二點的案例重複)。思索能否對 Linux 核心提交貢獻,儘量共用相同的巨集
:::
## 測驗 `7`
```c
static inline bool is_divisible(uint32_t n, uint64_t M)
{
return n * M <= M - 1;
}
static uint64_t M3 = UINT64_C(0xFFFFFFFFFFFFFFFF) / 3 + 1;
static uint64_t M5 = UINT64_C(0xFFFFFFFFFFFFFFFF) / 5 + 1;
int main(int argc, char **argv)
{
for (size_t i = 1; i <= 100; i++) {
uint8_t div3 = is_divisible(i, M3);
uint8_t div5 = is_divisible(i, M5);
unsigned int length = (2 << KK1) << KK2;
char fmt[9];
strncpy(fmt, &"FizzBuzz%u"[(9 >> div5) >> (KK3)], length);
fmt[length] = '\0';
printf(fmt, i);
printf("\n");
}
return 0;
}
```
先從以下程式碼段落推敲出判斷整除的核心邏輯
```c
static inline bool is_divisible(uint32_t n, uint64_t M)
{
return n * M <= M - 1;
}
static uint64_t M3 = UINT64_C(0xFFFFFFFFFFFFFFFF) / 3 + 1;
static uint64_t M5 = UINT64_C(0xFFFFFFFFFFFFFFFF) / 5 + 1;
```
利用到編碼循環的特性 (但不是很好理解 :(
```c
is_divisible(2, M3);
// 2 * M3 <= M3 - 1
// 2 * (UINT64_MAX / 3 + 1) <= (UINT64_MAX / 3)
// false
is_divisible(3, M3);
// 3 * M3 <= M3 - 1
// 3 * (UINT64_MAX / 3 + 1) <= (UINT64_MAX / 3)
// 3 * (UINT64_MAX / 3 + 1) 會溢位,變成 3 - 1
// true
is_divisible(4, M3);
// 4 * M3 <= M3 - 1
// 4 * (UINT64_MAX / 3 + 1) <= (UINT64_MAX / 3)
// 4 * (UINT64_MAX / 3 + 1) 會溢位,變成 M3 + 3 - 1
// false
```
:::spoiler 簡單測試
```c
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
static inline bool is_divisible(uint32_t n, uint64_t M)
{
return n * M <= M - 1;
}
static uint64_t M3 = UINT64_C(0xFFFFFFFFFFFFFFFF) / 3 + 1;
static uint64_t M5 = UINT64_C(0xFFFFFFFFFFFFFFFF) / 5 + 1;
int main(int argc, char **argv)
{
printf("UINT64_MAX = 0x%lx\n", UINT64_MAX);
printf("M3 = 0x%lx\n", M3);
printf("M5 = 0x%lx\n\n", M5);
int i;
for (i = 0; i <= 10; i++) {
printf("%d * M3 = 0x%lx \n", i, i * M3);
printf("M3 - 1 = 0x%lx\n\n", M3 - 1);
}
return 0;
}
```
:::
簡單來說 3 如果可以整除 i,`is_divisible(i, M3)` 會回傳 `true`
再來看主要功能,
```c
unsigned int length = (2 << KK1) << KK2;
strncpy(fmt, &"FizzBuzz%u"[(8 >> div5) >> (KK3)], length);
```
| Condition | length | (8>>div5)>>(KK3) |
| :-----------------: | :----------: | :---: |
| 3 的倍數 (非 5 的倍數) | 4 | 0 |
| 5 的倍數 (非 3 的倍數) | 4 | 4 |
| 15 的倍數 | 8 | 0 |
| 其他 | digit length | 8 |
- length: `(2 << div3) << div5`
- index: `(8 >> div5) >> (div3 << 2)`
:::success
延伸問題:
- [ ] 1. 解釋上述程式運作原理並評估 `naive.c` 和 `bitwise.c` 效能落差
避免 stream I/O 帶來的影響,可將 `printf` 更換為 `sprintf`
- [ ] 2. 分析 [Faster remainders when the divisor is a constant: beating compilers and libdivide](https://lemire.me/blog/2019/02/08/faster-remainders-when-the-divisor-is-a-constant-beating-compilers-and-libdivide/) 一文的想法 (可參照同一篇網誌下方的評論),並設計另一種 bitmask,如「可被 3 整除則末位設為 1」「可被 5 整除則倒數第二位設定為 1」,然後再改寫 `bitwise.c` 程式碼,試圖運用更少的指令來實作出 branchless;
參照 [fastmod: A header file for fast 32-bit division remainders on 64-bit hardware](https://github.com/lemire/fastmod)
- [ ] 3. 研讀 [The Fastest FizzBuzz Implementation](https://tech.marksblogg.com/fastest-fizz-buzz.html) 及其 [Hacker News](https://news.ycombinator.com/item?id=29413656) 討論,提出 throughput (吞吐量) 更高的 Fizzbuzz 實作
- [ ] 4. 解析 Linux 核心原始程式碼 [kernel/time/timekeeping.c](https://github.com/torvalds/linux/blob/master/kernel/time/timekeeping.c) 裡頭涉及到除法運算的機制,探討其快速除法的實作 (注意: 你可能要對照研讀 `kernel/time/` 目錄的標頭檔和程式碼)
> 過程中,你可能會發現可貢獻到 Linux 核心的空間,請充分討論
:::