# 16 - Infinite Probability Spaces, the Law of Total Probability ## Infinite probability spaces <u>Recall</u>: A sample space is a *non-empty countable* set. Countable: There is a 1:1 relation between the elements of a set and the integers Example: toss a coin until the first head Set of outcomes $S = \{H, TH, TTH, TTTH, ....\} = \{T^nH: n \in \mathbb{N}\}$ For any non-negative integer $n$ there is a outcome where exactly $n$ tails are tossed before a heads. $Pr(H) = \frac{1}{2}$ $Pr(TH) = \frac{1}{4}$ $Pr(TTH) = \frac{1}{8}$ $Pr(T^nH) = \frac{1}{2^{n+1}}$ $\sum_{\omega \in S}Pr(\omega) = \sum_{n=0}^{\infty} Pr(T^nH)$ $= \sum_{n=0}^\infty (\frac{1}{2})^{n+1} = \lim_{N \rightarrow \infty} \sum_{n=0}^N (\frac{1}{2})^{n+1}$ These two things are the same thing <u>Claim:</u> $\sum_{i=0}^N x^i = \frac{1-x^{N+1}}{1-x}, (0 < x < 1)$ $x^0 + x^1 + x^2 +x^3 + ... x^N = \frac{1-x^{N+1}}{1-x}$ $(1-x)(x^0 + x^1 + x^2 +x^3 + ... x^N) = 1-x^{N+1}$ (multiply both sides by $1-x$) $(x^0 + x^1 + x^2 +x^3 + ... x^N) -x^1 - x^2 - x^3 - x^4 - ... - x^N - x^{N+1}= x^0 - x^{N+1} = 1-x^{N+1}$ <u>Therefore:</u> $\sum_{i=0}^\infty x^i = \lim_{N \rightarrow \infty} \frac{1-x^{N+1}}{1-x} = \frac{1}{1-x}$ Back to this: $\sum_{n=0}^N (\frac{1}{2})^{n+1} = \frac{1}{2}\sum_{n=0}^N (\frac{1}{2})^{n} = \frac{1}{2}(\frac{1}{1-(1/2)}) = \frac{1}{2}\frac{1}{(1/2)} = 1$ We verified that if we add up the probability of all the events in the sample space, we get 1. --- Studying a game "First head wins" Two people Alice and Bob, take turns flipping a coin, first person to toss a head wins $A = \text{Alice wins} = \{H, TTH, TTTTH, ...\}$ $= \{T^{2n}H : n \in \mathbb{N}\}$ $Pr(A) = \sum_{\omega \in A} Pr(\omega) = \sum_{n=0}^\infty Pr(T^2nH)$ $=\sum_{n=0}^\infty (\frac{1}{2})^{2n+1} = \frac{1}{2}\sum_{n=0}^\infty (\frac{1}{2})^{2n}$ $\frac{1}{2} \sum_{n=0}^\infty (\frac{1}{4})^{n} = \frac{1}{2}(\frac{1}{1-(1/4)}) = \frac{1}{2}(\frac{1}{3/4}) = \frac{1}{2} \times \frac{4}{3}=\frac{2}{3}$ Takeaway: Probability that first player wins is $\frac{2}{3}$ --- "Second head wins" $S = \{T^nHT^mH : n,m \in \mathbb{N}\}$ At least n +m + 2 coins need to be tossed before the game is won $Pr(T^nHT^mH) = (\frac{1}{2})^{n +m + 2}$ $A = \text{Alice wins}$ $A_1 = \text{Alice tosses the first head and later wins}$ $A_2 = \text{Bob tosses the first head and leter alice wins}$ $A_1$ and $A_2$ are disjoint $Pr(A) = Pr(A_1 \cup A_2) = Pr(A_1) + Pr(A_2)$ For alice to toss the first head, the first number of tails needs to be even and the second number of tails needs to be odd $A_1 = \{T^{2k}HT^{2l+1}H : k,l \in \mathbb{N}\}$ $Pr(A_1) = \sum_{k=0}^\infty \sum_{l=0}^\infty Pr(T^{2k}HT^{2l + 1}H)$ $= \sum_{k=0}^\infty (\sum_{l=0}^\infty (\frac{1}{2})^{2k +2l +3})$ $= \sum_{k=0}^\infty ((\frac{1}{2})^{2k+3} \sum_{l=0}^\infty (\frac{1}{2})^{2l})$ $= \sum_{k=0}^\infty (\frac{1}{2})^{2k+3} \times \frac{4}{3}$ $Pr(A_1)= \frac{4}{3} \times (\frac{1}{2})^3 \times \sum_{k=0}^\infty = (\frac{1}{2})^3 (\frac{4}{3})^2 = \frac{2}{9}$ $A_2 = \{T^{2k+1}HT^{2l}H : k,l \in \mathbb{N}\}$ $Pr(A_2) = \sum_{k=0}^\infty\sum_{l=0}^\infty (\frac{1}{2})^{2k +2l +3} = \frac{2}{9}$ $Pr(A_1 \cup A_2) = \frac{4}{9} < \frac{1}{2}$ So alice is at a disadvantage ## Law of total probability If there are two events $A$ and $B$ where $Pr(B) > 0$ then: $Pr(A) = Pr(B) \times Pr(A | B) + Pr(\bar{B}) \times Pr(A | \bar{B})$ Proof: $=Pr(B) \times \frac{Pr(A \cap B)}{Pr(B)} + Pr(\bar{B}) \times \frac{Pr(A \cap \bar{B})}{Pr(\bar{B})} = Pr(A \cap B) + Pr(A \cap \bar{B})$ ![](https://i.imgur.com/CO0p3B9.png) Back to the coin game $X = \text{Alice gets the first head}$ $Pr(X) = Pr(X) \times Pr(A | X) + Pr(\bar{X}) \times Pr(A | \bar{X})$ $Pr(X) = \frac{2}{3}$ $Pr(\bar{X}) = 1 - \frac{2}{3} = \frac{1}{3}$ $\bar{X} = \text{Bob tossed the first head}$ If he tosses the first head, then the chances of alice tossing the first head after that is $\frac{2}{3}$ $X = \text{Alice tosses the first head}$ meaning that now Bob is the first to toss after that. The chance that bob gets the first head is $\frac{2}{3}$ and Alice now has a probability of $\frac{1}{3}$ of winning $Pr(X) = Pr(X) \times Pr(A | X) + Pr(\bar{X}) \times Pr(A | \bar{X})$ $Pr(X) = \frac{2}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{2}{3} = \frac{4}{9}$ ###### tags: `COMP2804` `Probability`