or
or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up
Syntax | Example | Reference | |
---|---|---|---|
# Header | Header | 基本排版 | |
- Unordered List |
|
||
1. Ordered List |
|
||
- [ ] Todo List |
|
||
> Blockquote | Blockquote |
||
**Bold font** | Bold font | ||
*Italics font* | Italics font | ||
~~Strikethrough~~ | |||
19^th^ | 19th | ||
H~2~O | H2O | ||
++Inserted text++ | Inserted text | ||
==Marked text== | Marked text | ||
[link text](https:// "title") | Link | ||
 | Image | ||
`Code` | Code |
在筆記中貼入程式碼 | |
```javascript var i = 0; ``` |
|
||
:smile: | ![]() |
Emoji list | |
{%youtube youtube_id %} | Externals | ||
$L^aT_eX$ | LaTeX | ||
:::info This is a alert area. ::: |
This is a alert area. |
On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?
Please give us some advice and help us improve HackMD.
Syncing
xxxxxxxxxx
在21世紀做自動微分?你需要Zygote.jl! - 鄭景文
由於場地問題,第二天我們移動到另一棟大樓啦!議程教室變動請見網站上的議程表。
歡迎來到 https://hackmd.io/@coscup/2019 共筆
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →點擊本頁上方的 開始用 Markdown 一起寫筆記!
手機版請點選上方 按鈕展開議程列表。
slides/投影片
Automatic Differentiation (AD) 自動微分
How AD work
Steps:
Wengert List
Different types of AD
Forward mode
Reverse mode
現代深度學習較常見: back propogation做兩件事情
從最接近輸出的地方開始
對於output跟變數數量差很多的,reverse mode會比較有效率。例如,通常back propogation只有一個output (loss function),但有很多變數(parameters)
Where is the Wengert List in Forward mode?
Wengert underneath Dual Number
Why Julia
Zygote.jl
安裝:
import Pkg ; Pkg.add("Zygote")
Source to Source AD
直接把某程式碼轉成另個程式碼
Differentiate SSA Form
Julia Compile Process
SSA From
https://arxiv.org/pdf/1810.07951.pdf
Not just Unroll control flow
減少呼叫次數
Zygote
Differentiable Programming
Zygote + Pytorch
Zygote + XLA.jl
XLA : Google TPU 格式
不須以 TensorFlow 改寫,即可在 Google TPU 上運作。
https://arxiv.org/pdf/1810.09868.pdf
tags:
COSCUP2019
Julia language
IB501