Try   HackMD

Week 1:CRNN + CTC

tags: 技術研討

與會者

晟瑋、昊中、沛筠、宜昌、育銓、信賢 + CV Team

Agenda

  1. 前言 (LiLi)
  2. CNN (LiLi)
  3. RNN (昱睿)
  4. Transcription (昱睿)
  5. Loss (昱睿)
  6. github code 的執行流程架構圖 (LiLi)
  7. data_manager.py (LiLi)
  8. crnn.py (昱睿)

論文研讀: An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

  • 論文連結:link
  • 前言

    • 舊有的演算法都是將訓練和調教分開,但 CRNN 可以做到 end-to-end 的訓練
      • DCNN 模型
        • 從詞彙當中把每個字元裁切出來 (問題點:要先訓練強字元偵測器)
        • 把每個詞彙都當成一個分類,改為分類模型 (問題點:預測的詞至少要在訓練集有看過才行)
      • RNN 模型
        • 雖可處理不同長度的詞彙,但要先抽取影像當中的特徵 (e.g., SIFT)
          Image Not Showing Possible Reasons
          • The image file may be corrupted
          • The server hosting the image is unavailable
          • The image path is incorrect
          • The image format is not supported
          Learn More →
      • CRNN 模型 (結合 DCNN + RNN)
        • 只需針對詞彙標註,不用標註當中的字元
        • 不須進行影像預處理 (e.g., 字元定位、字元分割)
        • 長度無約束、只要對高度進行規一化
        • 參數較過往的 DCNN 模型少很多,因此占用的儲存空間較少
  • 網路架構

    • 卷積層 (Convolutional Layers):提取影像特徵
    • 迴圈層 (Recurrent Layers):預測每一幀的標籤分布
      • 上下文資訊有助於訓練
      • 透過反向傳播 (back propagation) 可以將誤差差值傳到卷積層,讓迴圈層和卷積層可以共同訓練
      • 可以對任意長度的序列進行操作
    • 轉錄層 (Transciption Layer):將每一幀的預測變為最終的標籤
      • 無詞典轉錄 (lexicon-free)
      • 基於詞點的轉錄 (lexicon-based)

Sequence Labeling (RNN 的建構)

  • [在這裏 RNN 扮演什麼角色?] 講 CNN 產生出來的 feature sequences 轉換成序列性的 label
    • input: feature maps
    • output: sequence of labels (e.g.)

RNN 的特色

  • 一個講 RNN 不錯的網站: link
  • [優點] 使用 RNN 有三個優點
    1. 擅長抓語意分析
      • 基於圖片的背景資訊比符號資訊還要可靠
      • 圖片的特徵可以讓模型分辨出模稜兩可的字,e.g. i & l
    2. 能夠將誤差反向傳輸到上一層 (CNN layers),所以才可以 end-to-end 訓練
    3. 能夠作用在不定長度的內容
  • [缺點] 因為 RNN 容易 gradient vanishing
    • 所以用 LSTM 比較會避免這個問題

採用 LSTM

  • [bi-directional] 但是 LSTM 是有方向性的,他會參考,但也只會參考過去的預測資訊;不過在影像問題可以用雙向 LSTM 而且是很有幫助的
    • 影像資料有個特別之處是個小格 input data 出現的順序跟時間沒有關係,不會因為在分析第 5 格 feature 的時候看不到第 6 格的 feature (至少在現在的應用場景是這樣)。因此,這裡的 LSTM 可以再加一個反過來做的 LSTM;也就是參考比較前面的 feature 然後回推上一個字是甚麼。所以,兩個合起來就會是雙向的 LSTM
  • [deep] 而且,多個雙向 LSTM 是可以被疊再一起的,就會變成 deep bi-directional LSTM,深層的成效看起來比較好 (從語音的例子是這樣顯示的)

back-propagation in RNN case

  • [BPTT] 在 RNN 的例子,要計算誤差時一樣是使用反向傳播法。因為 RNN 本來就是一層一層傳遞,因此計算反向誤差時方向就會是正向計算反向。又因為 RNN 的不同層就好比在不同時間發生,所以這時的反向傳播也常稱為 "back-propagation through time" (時間性的反向傳播)
  • [Map-to-Sequence] 實際上,會製造一個叫做 Map-to-Sequence 的 神經網路層 ,當作 RNN 與 CNN 的橋樑,目的是將 RNN 的 feature sequences 變成 feature map 傳給 CNN

RNN 先前筆記區

  • RNN 變形 (RNN & LSTM & 雙向 LSTM & 深度雙向 LSTM 在應用上的差異?<<待釐清>>)
    • RNN
    • LSTM
    • 雙向LSTM
      • 在影象的序列中,兩個方向的上下文是相互有用且互補的
    • 深雙向LSTM
      • 在語音識別任務中取得了顯著的效能改進

Transcription Layer (轉錄層)

  • 目的:將 RNN 預測出來的值轉換成 label sequence
    • 數學上的意思就是找到條件機率最大的那個 label sequence,已知 RNN 預測出來的值
  • 實務上這邊有兩種模式
    • lexicon-free transcription: 預測值不基於任何辭典 (直接組起來?)
    • lexicon-based transcription: 從 lexicon 裡面挑出機率最高的那一個 (有點像分類問題?)
  • 什麼是 lexicon?
    • [answer] 就是辭典,一個收集很多詞彙的集合
    • [e.g.]
    ​​​​lexicon = {
    ​​​​    'hello world',
    ​​​​    'good morning',
    ​​​​    'I feel very hungry', ...
    ​​​​}
    

2.3.1 Probability of label sequence

  • CTC Layer
  • 當我們使用 negative log-likelihood 作為訓練目標的誤差函數,我們只需要圖片的 label sequence 以及 image data 本身,不需要針對上面一個一個字去人工標註
  • 怎麼去對應?
    • 一個
      B
      函數,會做兩件事情
      1. 消除重複的 label
      2. 把空白去除
      • [e.g. ]
        B
        ("hh-e-l-ll-oo") = "hello",其中 "-" 為空白的意思
    • 想辦法調整參數讓下面這個條件機率最大化
      • p(l|y)=π:B(π)=1p(π|y)
        > Eq. 1
      • l
        = "hello"
      • π
        就是經過消除重複、刪除空白後會變成 "hello" 的原始 label sequence,例如 "hh-e-l-ll-oo", "he-l-ll-ooo",
      • y
        是一個長度為
        T
        的向量,每一個分量都是一個機率分佈
        • y=(y1,y2,...,yT)
      • p(π|y)=t=1Tyπtt
        , 其中
        yπtt
        是在時間
        t
        被預測為
        πt
        的機率
        • 在我們的例子,時間
          t
          意思是第
          t
          張小格子圖
        • πt
          就是第
          t
          個小格子圖被預測的值
      • 最後利用 CTC 來最大化 Eq. 1

2.3.2 Lexicon-free transcription

  • 因為沒有 lexicon,所以就是找每個條件機率所對應到的
    πt
    ,然後再把這些字組起來,也就是這個算式:
    lB(argmaxπp(π|y))

2.3.3 Lexicon-based transcription

  • 因為有 lexicon,所以會用這種算式去極大化
    lB(argmaxlDp(l|y))
    • 其中
      D
      就是辭典 (lexicon)
  • 但是這樣子找
    l
    是非常耗時的,所以會採取 lexicon-free 的方式先找到最一個 label (
    l
    ) ,然後再用 edit distance metric 去算一個集合,然後再去找這附近最像的
    • l=argmaxlNδ(l)p(l|y)
    • 這個集合
      Nδ(l)
      就是在找候選字的意思
    • 說用 B-K tree 可以找很快,運算複雜度是
      O(log(|D|))
    • 然後候選字跟正確答案的字,距離是 edit distance
      • 新增
      • 替換
      • 刪除
      • [e.g. ]
        ED("123","124")=1
        ,
        ED("123","142"=2)

整個模型的 Loss 要怎麼計算?

  • 實驗
    • Pooling 採用 1×2 大小的矩形池化視窗而不是傳統的正方形,有助於識別一些具有窄形狀的字元,例如i和l
    • 在 convolutional layer 後加入 batch normalization layer 可讓訓練過程大大加快

[code] Belval/CRNN

程式大致架構

Image Not Showing Possible Reasons
  • The image file may be corrupted
  • The server hosting the image is unavailable
  • The image path is incorrect
  • The image format is not supported
Learn More →

data_manager.py

def load_data():

def load_data(self): """Load all the images in the folder """ print("Loading data") examples = [] count = 0 skipped = 0 for f in os.listdir(self.examples_path): ### ---------------------------------- # 圖檔的 label 是直接寫在檔名上 # 後面帶隨機碼 (e.g., $1,000_a3hf.jpg) # 這樣的做法會有一些限制 # 像是 110/03/09 就沒辦法在檔名上呈現,因為檔名不支援 / ### ---------------------------------- # label 長度會根據 cnn 的 output 而定 ### ---------------------------------- if len(f.split("_")[0]) > self.max_char_count: continue ### ---------------------------------- # resize_image 寫法詳見下方說明 ### ---------------------------------- arr, initial_len = resize_image( imread(os.path.join(self.examples_path, f), mode="L"), self.max_image_width, ) examples.append( ( arr, f.split("_")[0], label_to_array(f.split("_")[0], self.char_vector), ) ) count += 1 return examples, len(examples)

def resize_image(): (utils.py)

影像在丟進CRNN前,皆會轉為 32(高) x W(寬) 【在此用 W=200 示意】

  • 如果影像的寬大於 200,會直接變形為 32 x 200

    • 示意圖

    • 範例圖

  • 如果影像的高小於 32,會先等比例放大至高等於 32。接著若影像的寬大於 200,就會將圖截斷;反之,會將影像的寬補足至200 (補黑底)

    • 示意圖

    • 範例圖

def label_to_array(): (utils.py)

# 將各字元轉成對應的 index def label_to_array(label, char_vector): try: return [char_vector.index(x) for x in label] except Exception as ex: print(label) raise ex

def generate_all_train_batches():

def generate_all_train_batches(self): train_batches = [] while not self.current_train_offset + self.batch_size > self.test_offset: old_offset = self.current_train_offset new_offset = self.current_train_offset + self.batch_size self.current_train_offset = new_offset # 根據 batch_size 產出 batch data raw_batch_x, raw_batch_y, raw_batch_la = zip( *self.data[old_offset:new_offset] ) batch_y = np.reshape(np.array(raw_batch_y), (-1)) ### ---------------------------------- # 這邊不需要攤平 # 錯誤寫法: # batch_dt = sparse_tuple_from(np.reshape(np.array(raw_batch_la), (-1))) # 直接將各 label 對應的 index list 餵進 sparse_tuple_from() 即可 # batch_dt 主要會產出 3 個東西: # 1. 每個字元是在第幾張圖中的第幾個位置 # 2. 每個字元是在第幾張圖中,還有在 CHAR_VECTOR 中的 index # 3. (batch_size, batch data中最長的字元數) batch_dt = sparse_tuple_from(raw_batch_la) raw_batch_x = np.swapaxes(raw_batch_x, 1, 2) raw_batch_x = raw_batch_x / 255.0 batch_x = np.reshape( np.array(raw_batch_x), (len(raw_batch_x), self.max_image_width, 32, 1) ) train_batches.append((batch_y, batch_dt, batch_x)) return train_batches

crnn.py

  • tensorflow 精神:先畫圖,再實際跑資料
    • 先畫圖:在 python 上產生一堆變數,這些變數都是神經網路的框架,在 python 裡面就是 Tensor (這個時候 data 還沒進來喔!)
    • 實際跑
      • 定義 init 然後叫他 run
      ​​​​​​​​session = tf.Session() ​​​​​​​​with session.as_default(): ​​​​​​​​ output, input, init = nn(a, b, c)# 等一下要跑的網路架構 ​​​​​​​​ init.run()
      • 初始化: tf.Session().as_default()
      • 餵入資料開始在網路架構執行
      ​​​​​​​​real_cnn_output = session.run([cnn_output], ​​​​​​​​ feed_dict={ ​​​​​​​​ inputs: train_batches[0][2] ​​​​​​​​ } ​​​​​​​​ )

看 code 可能會有的問題

  • 到底我這樣 train 最多會預測多長的字元?
    • A: 在這個 code 的例子會是 seq_len = (max_image_width
      ÷
      4)
      1
      ,原因是 CNN 的網路結構讓最後的 feature map 的形狀是這樣;如果是不同的疊法可能會產生不同的 shape,那麼最大字元數也會不同
    • ÷
      4 的意義是,原始圖片的可辨識最小字元至少要 4 個 pixels;再小的話就無法被訓練,當然也無法預測
  • CNN 層如何 output 給 RNN 層?
    • 就是 CNN output 的 feature maps 轉換成 RNN 要 input 的形狀,方式不拘。在我們的例子是 tf.Squeeze,效果如下
cnn_output #<tf.Tensor 'conv2d_104/Relu:0' shape=(?, 49, 1, 512) dtype=float32> rnn_input = tf.squeeze(cnn_output, [2]) ''' 把位置 2 的 1 給壓縮掉 ''' rnn_input #<tf.Tensor 'Squeeze_2:0' shape=(?, 49, 512) dtype=float32>

常見的 tensorflow 指令

1. 神經元
  • tf.placeholder (預設 Tensor 的形狀,給 input data 用的)
  • tf.Variable (裡面的值會在過程中被更新)
  • tf.constant (常數項)
  • tf.nn.ctc_loss (loss 也是神經元之一喔!因為他要被更新)
  • tf.nn.ctc_beam_search_decoder
2. 網路架構運算法
  • tf.layers.conv2d
  • tf.layers.max_pooling2d
  • tf.nn.relu
  • tf.layers.batch_normalization
  • tf.nn.rnn_cell.BasicLSTMCell
  • tf.nn.bidirectional_dynamic_rnn
3. 看起好像很可怕,其實就是 numpy 的指令
  • tf.matmul
  • tf.add
  • tf.concat
  • tf.reshape
  • tf.reduce_mean
  • tf.transpose
  • tf.Squeeze
4. 運算指令
  • tf.global_variables_initializer
  • tf.Session
    • tf.Session().as_default()
    • tf.Session().run()
  • tf.train
    • tf.train.Saver
    • tf.train.AdamOptimizer

提問區

姓名 問題 解答
昊中 CRNN模型的input data是不是無法直接輸入多行文字影像?得先手動將文字切成一列一列的? 對,每個 frame 只會預測一個字元,所以實務上沒辦法預測多行文字的影像,要先切好
沛筠 目前Map-to-Sequence的方式除了Squeeze之外,還有其他的嗎? 其實是有的,只是在這裡的用法是直接合併然後將資料餵給 RNN,當然也可以在 CNN output 之後做一個矩陣相乘然後再給 RNN ;只是還是要符合某些形狀。e.g. 在我們的例子是 24 x 1 x 512 (tf.Squeeze)
24 x 512
RNN,也可以嘗試這樣 24 x 1 x 512 (tf.matmul)
24 x 1024
RNN
Track 2 1. 論文裡的 Figure 2. 說到 feature sequence 的每一個 vector 都對應到圖片的其中一區的感受視野 (receptive field),好奇為什麼是一個 feature sequence 對應某幾個 columns 而不是全部的圖 (過程中每個 kernel 不都會掃過整個 feature maps 嗎?)
2. 想要再聽一次宜昌版本的 CTC loss 解說,beam search 是什麼?
1. 詳見附錄1
2. 宜昌老師說請先看這篇: answer(昱睿)
信賢 1.(講者準備的資料)想詢問resize若有補黑底,不會造成訓練不準嗎?
2.(第8頁table 4.)是說CRNN對於真實的圖像反而表現比較好?但清楚的影像反而比較差@@ 不太能理解
1. 黑底可以把它想成和白底一樣,都是無意義的背景,所以在萃取feature的時候,黑底的部分就不會是重要資訊
2. paper 中並無針對三種資料的訓練集和測試集多做描述,但若以實務來看,乾淨的樂譜的準確度應該要較高才對
軒彤 我現場版
倚任副理 1. SIFT 的 output 怎麼變成 sequence 餵進 RNN?
  • 附錄1


  • 補充

    • CRNN 可以處理任意長度的序列,此外不需要字元分割、scaling 以及 normalization (CRNN中切小圖的CNN的寬是固定的還是會根據整張圖的寬而切大小的小圖?)

      • scaling (min-max scaling) (詳細說明)

        x=xxminxmaxxmin

      • normalizationl (符合常態分布)

        x=xxmeanxmaxxmin