tags: GAS-GCN

Gated Action-Specific Graph Convolutional Networks for Skeleton-Based Action Recognition

About the paper

  • read
  • author: Wensong Chan ,Zhiqiang Tian, and Yang Wu
  • published: 2020/6/21
  • contributin
    • ASGCN: combine structural and implicit edge
    • Gated CNN: filter out useless temporal information
  • Dataset:
    • NTU-RGB + D 120
      • 南洋理工大學蒐集的資料集
      • RGB videos: 1920x1080
      • depth map videos: 512*424
      • IR videos (紅外線): 512*424
      • 3D skeletal data: 25 個關節
      • download
    • Kinetics
      • 主要來自Youtube
      • 分類: person, person-person, person-object
      • 至少600個影片,一個影片10秒
      • 有label
      • download
      • detail
  • Experiments Details
    • PyTorch: implement GAS-GCN
    • SGD: optimization strategy
    • 2 NVIDIA 2080TI GPU with memory of 11GB
    • NTU-RGB + D training
      • T=300
      • epoch=50, base learning rate:
        • 1~29: 0.1
        • 30~40: 0.1 x 0.1
        • 41~50: 0.1 x 0.1 x 0.1
      • batch size=28
    • Kinetics
      • T=150
      • epoch=65, base learning rate:
        • 1~44: 0.1
        • 45~55: 0.1 x 0.1
        • 56~65: 0.1 x 0.1 x 0.1
      • batch size=64
      • 𝜇=0.5

GAS-GCN

  • Gated Action-Specific Graph Convolutional Networks
  • Why
    • GCNs-based only focus on ajencent matrix (只有附近的joint,但是每個動作不一定只影響到一個關節附近)
    • The connection between two joints is structural edge
    • solution: action-specific graph convolutional module (ASGCM)
      • generate the implicit edge
      • decide the ratio of the combination of structural edge and implicit edges according to different action
  • GAS-GCN
    • Skeleton-based recognition depends on the contexts and long-range dependencies in temporal dimension
    • 但不是所有資訊都會用到action recognition上
    • solution: Gated mechanism
      • control the information flowing in RNN
      • operates the time dimension

Source code