Try   HackMD

More Matrices

Eigenvalue/ Eigenvector

  • \(A\): an \(n\times n\) matrix, \(v\): a vector \(\in \mathbb{R}^n\), \(\lambda:\) a scalar
  • If there exist a nonzero vector \(v\) such that \(Av = \lambda v\), we say \(v\) is an eigenvector and \(\lambda\) is the eigenvalue for \(v\)
  • Fact: eigenvectors corresponding to distinct eigenvalues are linearly independent

Matrix Diagonalization

  • Fact: not all matrices are diagonalizable
  • If an \(n \times n\) matrix \(A\) is diagonalizable, it can be decomposed as
    • \(A = PDP^{-1}\)
      • \(D\) is a diagonal matrix with \(\lambda_1 \cdots \lambda_n\) diagonal entries
      • \(P = [p_1 \cdots p_n]\) is an invertible matrix
    • \(AP = PD\)
      • \(AP = [A p_1 \cdots A p_n]\)
      • \(PD = [\lambda_1 p_1 \cdots \lambda_n p_n]\)
    • \(A p_i = \lambda_i p_i\). Thus, \(p_i\) is an eigenvector of \(A\) with eigenvalue \(\lambda_i\)
    • Because \(P\) is invertible, the column vectors of \(P\) (the eigenvectors of \(A\)) are independent
    • \(A^n = P D^{n} P^{-1}\) (computationally efficient!)

Symmetric Matrix

  • definition: \(A = A^\top\)
  • Fact: symetric matrix is diagonalizable, and its eigenvectors can be chosen to form an orthonormal basis of \(\mathbb{R}^n\)
  • \(A = U D U^{-1}\) (diagonalization)
    • \(U\) is an orthogonal matrix
      • its column vectors are orthonormal
      • \(U^\top U = I = UU^\top\)
      • \(U^{-1} = U^\top\)
    • \(A = U D U^\top\)
  • Quadratic form: \(x^{\top}Ax\)
    • \(A\) is a symmetric matrix, \(x\) is a vector
    • \(x^{\top}Ax = x^{\top} UDU^{\top}x\)
    • Let \(y = U^{\top}x\),
      \(x^{\top}Ax = (x^{\top} U)D(U^{\top}x) = y^{\top}Dy = \Sigma_i \lambda_i y_i^2 \le \lambda_{\text{max}} \Sigma_i y_i^2 = \lambda_{\text{max}}\, y^\top y = \lambda_{\text{max}}\, x^\top x\)
      • proof. \(y^\top y = (U^\top x)^\top (U^\top x) = x^\top U U^\top x = x^\top U U^{-1}x = x^\top x\) (orthogonal maxtrix preserves norm)
      • \(\lambda_{\text{max}}\) (resp. \(\lambda_{\text{min}}\)): the largest (resp. smallest) eigenvalues among all eigenvalues of \(A\)
    • \(\lambda_{\text{min}}\, x^\top x \le x^\top Ax \le \lambda_{\text{max}}\, x^\top x\)