# More Matrices ### Eigenvalue/ Eigenvector - $A$: an $n\times n$ matrix, $v$: a vector $\in \mathbb{R}^n$, $\lambda:$ a scalar - If there exist a nonzero vector $v$ such that $Av = \lambda v$, we say $v$ is an eigenvector and $\lambda$ is the eigenvalue for $v$ - *Fact:* eigenvectors corresponding to distinct eigenvalues are linearly independent ### Matrix Diagonalization - *Fact*: not all matrices are diagonalizable - If an $n \times n$ matrix $A$ is diagonalizable, it can be decomposed as - $A = PDP^{-1}$ - $D$ is a diagonal matrix with $\lambda_1 \cdots \lambda_n$ diagonal entries - $P = [p_1 \cdots p_n]$ is an invertible matrix - $AP = PD$ - $AP = [A p_1 \cdots A p_n]$ - $PD = [\lambda_1 p_1 \cdots \lambda_n p_n]$ - $A p_i = \lambda_i p_i$. Thus, $p_i$ is an eigenvector of $A$ with eigenvalue $\lambda_i$ - Because $P$ is invertible, the column vectors of $P$ (the eigenvectors of $A$) are independent - $A^n = P D^{n} P^{-1}$ (computationally efficient!) ### Symmetric Matrix - definition: $A = A^\top$ - *Fact:* symetric matrix is diagonalizable, and its eigenvectors can be chosen to form an [orthonormal basis](https://hackmd.io/@charlotteTYC/prerequisites) of $\mathbb{R}^n$ - $A = U D U^{-1}$ (diagonalization) - $U$ is an orthogonal matrix - its column vectors are orthonormal - $U^\top U = I = UU^\top$ - $U^{-1} = U^\top$ - $A = U D U^\top$ - Quadratic form: $x^{\top}Ax$ - $A$ is a symmetric matrix, $x$ is a vector - $x^{\top}Ax = x^{\top} UDU^{\top}x$ - Let $y = U^{\top}x$, $x^{\top}Ax = (x^{\top} U)D(U^{\top}x) = y^{\top}Dy = \Sigma_i \lambda_i y_i^2 \le \lambda_{\text{max}} \Sigma_i y_i^2 = \lambda_{\text{max}}\, y^\top y = \lambda_{\text{max}}\, x^\top x$ - *proof.* $y^\top y = (U^\top x)^\top (U^\top x) = x^\top U U^\top x = x^\top U U^{-1}x = x^\top x$ (orthogonal maxtrix preserves norm) - $\lambda_{\text{max}}$ (resp. $\lambda_{\text{min}}$): the largest (resp. smallest) eigenvalues among all eigenvalues of $A$ - $\lambda_{\text{min}}\, x^\top x \le x^\top Ax \le \lambda_{\text{max}}\, x^\top x$