MLDL
(小推)
(如果要實做的話,小推)
還是去翻書或上課,因為只是使用sklearn去套的話,大家都會壓!
(導公式,用心推!)
https://medium.com/@chih.sheng.huang821
https://medium.com/@chih.sheng.huang821/機器學習-基礎數學篇-一-1c8337179ad6
https://medium.com/@chih.sheng.huang821/機器學習-基礎數學-二-梯度下降法-gradient-descent-406e1fd001f
https://medium.com/@chih.sheng.huang821/機器學習-基礎數學-三-梯度最佳解相關算法-gradient-descent-optimization-algorithms-b61ed1478bd7
https://medium.com/@chih.sheng.huang821/機器學習介紹-8e49f7f5be29
https://medium.com/@chih.sheng.huang821/機器-統計學習-羅吉斯回歸-logistic-regression-aff7a830fb5d
https://medium.com/@chih.sheng.huang821/機器學習-kernel-函數-47c94095171
https://medium.com/@chih.sheng.huang821/機器學習-支撐向量機-support-vector-machine-svm-詳細推導-c320098a3d2e
https://medium.com/@chih.sheng.huang821/貝氏決策法則-bayesian-decision-rule-最大後驗機率法-maximum-a-posterior-map-96625afa19e7
https://medium.com/@chih.sheng.huang821/機器學習-決策樹-decision-tree-ed102ee62dfa
https://medium.com/@chih.sheng.huang821/機器學習-神經網路-多層感知機-multilayer-perceptron-mlp-運作方式-f0e108e8b9af
(不錯,推個)
https://medium.com/@yehjames
https://medium.com/jameslearningnote/資料分析-機器學習-第1-3講-kaggle介紹-f0fd99d30f92
https://medium.com/jameslearningnote/資料分析-機器學習-第1-4講-資料科學領域的大神-網站-ae9577df2c19
https://medium.com/jameslearningnote/資料分析-機器學習-第2-1講-如何獲取資料-sklearn內建資料集-baa8f027ed7b
https://medium.com/jameslearningnote/資料分析-機器學習-第2-2講-如何獲取資料-google-map-api-beb7c88dc4e3
https://medium.com/jameslearningnote/資料分析-機器學習-第2-5講-資料視覺化-matplotlib-seaborn-plotly-75cd353d6d3f
https://medium.com/jameslearningnote/資料分析-機器學習-第3-1講-python-機器學習以及scikit-learn介紹-fdb052463911
https://medium.com/jameslearningnote/資料分析-機器學習-第3-2講-線性分類-感知器-perceptron-介紹-84d8b809f866
https://medium.com/jameslearningnote/資料分析-機器學習-第3-3講-線性分類-邏輯斯回歸-logistic-regression-介紹-a1a5f47017e5
https://medium.com/jameslearningnote/資料分析-機器學習-第3-4講-支援向量機-support-vector-machine-介紹-9c6c6925856b
https://medium.com/jameslearningnote/資料分析-機器學習-第5-4講-機器學習進階實用技巧-正規化-8dd14fcd3140
https://leemeng.tw/essence-of-principal-component-analysis.html (推推推)
https://medium.com/d-d-mag/淺談兩種降維方法-pca-與-t-sne-d4254916925b
https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
(不推)
https://ithelp.ithome.com.tw/users/20107244/ironman/1726
https://ithelp.ithome.com.tw/articles/10204460
https://ithelp.ithome.com.tw/articles/10204845
加速訓練收斂使用
https://ithelp.ithome.com.tw/articles/10197357 (推)
https://aifreeblog.herokuapp.com/posts/54/data_science_203/ (推)
https://stats.stackexchange.com/questions/70801/how-to-normalize-data-to-0-1-range (推)
http://yhhuang1966.blogspot.com/2018/04/keras-cifar-10.html
https://stackoverflow.com/questions/54112307/deprecation-warning-in-scikit-learn 改用SimpleImputer
https://stackoverflow.com/questions/30667525/importerror-no-module-named-sklearn-cross-validation 改用model_selection
https://blog.csdn.net/qq_40773512/article/details/82662191
https://www.itread01.com/content/1541881152.html fit transform fit_transform函數的差別
https://www.studyai.cn/modules/impute.html 改用SimpleImputer
https://zhuanlan.zhihu.com/p/33569866 OneHotEncoder和LabelEncoder的講述(比較好)
https://stackoverflow.com/questions/54345667/onehotencoder-categorical-features-depreciated-how-to-transform-specific-column (categorical_features 參數被廢棄!)
https://tree.rocks/python/sklearn-explain-onehotencoder-use/ OneHotEncoder
https://www.cnblogs.com/zhoukui/p/9159909.html OneHotEncoder
https://www.itread01.com/elllp.html OneHotEncoder
https://zhengheng.me/2017/08/01/house-pricing/
https://www.cnblogs.com/chaosimple/p/4153167.html 標準化(z分數)
結果將資料變成平均數0,標準差為1的資料!!!
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html
https://jerrynest.io/deep-learning-resource/
https://zhuanlan.zhihu.com/p/25794795 (不推)
https://medium.com/雞雞與兔兔的工程世界/機器學習-ml-note-overfitting-過度學習-6196902481bb (推)
https://medium.com/雞雞與兔兔的工程世界/機器學習-ml-note-convolution-neural-network-卷積神經網路-bfa8566744e9 (中大推)
https://medium.com/雞雞與兔兔的工程世界/機器學習-ml-note-cnn演化史-alexnet-vgg-inception-resnet-keras-coding-668f74879306 (中大推)
https://www.zhihu.com/question/36686900 (推)
http://scs.ryerson.ca/~aharley/vis/conv/?source=post_page–––––––––––––- 模擬lenet的運算 (推)
https://zh.wikipedia.org/wiki/過適
(推推)
https://medium.com/@syshen/入門深度學習-1-ed873b65bc5
https://medium.com/@syshen/入門深度學習-2-d694cad7d1e5 寫得好推
https://medium.com/cubo-ai/物體偵測-object-detection-740096ec4540 (物體偵測 推推!)
https://brohrer.mcknote.com/zh-Hant/
https://brohrer.mcknote.com/zh-Hant/how_machine_learning_works/how_neural_networks_work.html
https://brohrer.mcknote.com/zh-Hant/how_machine_learning_works/how_convolutional_neural_networks_work.html (推)
https://brohrer.mcknote.com/zh-Hant/how_machine_learning_works/how_rnns_lstm_work.html (推)
(可)
https://ithelp.ithome.com.tw/users/20001976/ironman/1395
https://ithelp.ithome.com.tw/articles/10191404
https://ithelp.ithome.com.tw/articles/10191528
https://ithelp.ithome.com.tw/articles/10191627
https://ithelp.ithome.com.tw/articles/10191725
https://ithelp.ithome.com.tw/articles/10192950
(推)
https://tomkuo139.blogspot.com/2018/03/ai.html
https://tomkuo139.blogspot.com/2018/05/aimlp-cifar10.html
https://tomkuo139.blogspot.com/2018/05/aicnn-cifar10.html
(推)
https://medium.com/@baubibi
https://medium.com/@baubibi/速記ai課程-深度學習入門-一-68e27912ce30
https://medium.com/@baubibi/速記ai課程-convolutional-neural-networks-for-computer-vision-applications-一-e7059b3e0071
https://mropengate.blogspot.com/2017/02/deep-learning-role-of-activation.html 使用激勵函數的原因
https://kknews.cc/zh-tw/tech/y848kvn.html 權重初始化(另一篇)
https://zhuanlan.zhihu.com/p/25110150 權重初始化
改善cnn辨識率
內心os:實際訓練會常常發生overfit的狀況!XD
https://medium.com/@syshen/改善-cnn-辨識率-dac9fce59b63 (推)
(推)
https://medium.com/@CinnamonAITaiwan
https://medium.com/@CinnamonAITaiwan/cnn模型-損失函數-loss-function-647e13956c50
https://medium.com/datadriveninvestor/l1-l2-regularization-7f1b4fe948f2
https://medium.com/@CinnamonAITaiwan/cnn入門-overfitting-d10acd15ec21 overfit討厭!
https://medium.com/@CinnamonAITaiwan/深度學習-cnn原理-keras實現-432fd9ea4935
https://medium.com/@CinnamonAITaiwan/cnn入門-圖像增強-fa654d36dafc
https://medium.com/@CinnamonAITaiwan/cnn模型-resnet-mobilenet-densenet-shufflenet-efficientnet-5eba5c8df7e4
https://medium.com/@chih.sheng.huang821/卷積神經網路-convolutional-neural-network-cnn-cnn運算流程-ecaec240a631
http://elmer-storage.blogspot.com/2018/07/cnn-convolutional-neural-network-cnn.html
https://medium.com/bryanyang0528/deep-learning-keras-手寫辨識-mnist-b41757567684
(基本上我覺得還不錯!!!XD)
http://hemingwang.blogspot.com/2016/12/ai_20.html (推)
http://hemingwang.blogspot.com/2018/09/ai_10.html (可)
http://hemingwang.blogspot.com/2018/09/ai_50.html (可)
http://hemingwang.blogspot.com/2017/06/aiweight-decay.html
http://hemingwang.blogspot.com/2019/05/trilogy.html
https://leemeng.tw/deep-learning-for-everyone-understand-neural-net-and-linear-algebra.html
https://leemeng.tw/deep-learning-resources.html
https://violin-tao.blogspot.com/2017/07/ml-introduction-of-deep-learning.html
https://violin-tao.blogspot.com/2017/07/ml-backpropagation.html
https://violin-tao.blogspot.com/2017/07/ml-tips-for-training-dnn.html
https://violin-tao.blogspot.com/2017/07/ml-convolutional-neural-network-cnn.html
https://violin-tao.blogspot.com/2017/07/ml-why-deep.html
https://violin-tao.blogspot.com/2018/02/ml-batch-normalization.html
https://machinelearningmastery.com/how-to-reduce-overfitting-in-deep-learning-with-weight-regularization/
https://stackoverflow.com/questions/41260042/global-weight-decay-in-keras
https://ithelp.ithome.com.tw/articles/10191725
https://github.com/keras-team/keras/issues/2717
https://ithelp.ithome.com.tw/articles/10191627
https://chtseng.wordpress.com/2017/09/23/學習使用keras建立卷積神經網路/
https://keras.io/zh/losses/
https://keras.io/zh/metrics/
https://keras.io/zh/optimizers/
https://keras.io/zh/activations/
https://keras.io/zh/datasets/
https://keras.io/zh/initializers/
https://keras.io/zh/regularizers/ L2正規化去懲罰權重
https://keras.io/zh/visualization/
https://keras.io/zh/preprocessing/image/
循序模型
https://keras.io/zh/getting-started/sequential-model-guide/
https://keras.io/zh/models/sequential/
函數api(平行模型)
https://keras.io/zh/getting-started/functional-api-guide/
https://keras.io/zh/models/model/
Q&A
https://keras.io/zh/getting-started/faq
核心網路層
https://keras.io/zh/layers/core/
卷積層(Conv2D)
https://keras.io/zh/layers/convolutional/
池化層(MaxPooling2D)
https://keras.io/zh/layers/pooling/
Batch Norm.層
https://keras.io/zh/layers/normalization/
資料增強(data augmentation)
https://chtseng.wordpress.com/2017/11/11/data-augmentation-資料增強/
https://github.com/ch-tseng/data-augmentation-Keras/blob/master/DataAugmentation-1.ipynb 範例筆記本
cnn padding same stride > 1
https://www.chzzz.club/post/192.html
https://blog.csdn.net/wuzqChom/article/details/74785643
一些colab的線上教學
https://colab.research.google.com/notebooks/mlcc/hello_world.ipynb
https://colab.research.google.com/notebooks/mlcc/tensorflow_programming_concepts.ipynb
https://colab.research.google.com/notebooks/mlcc/creating_and_manipulating_tensors.ipynb
電腦太老的好東西
記得開gpu訓練 否則你要等很久…
https://medium.com/pyradise/上傳檔案到google-colab-dd5369a0bbfd
https://medium.com/@white1033/利用google-colaboratory-使用免費gpu-b98352b9575d 免費的tpu及gpu
https://technews.tw/2017/04/07/first-in-depth-look-at-googles-tpu-architecture/ tpu的好處
https://mattwang44.github.io/en/articles/colab/ 基本操作
https://mc.ai/第一次用-google-colab-就上手/
https://ithelp.ithome.com.tw/articles/10219519
https://ithelp.ithome.com.tw/users/20120243/ironman/2404?page=1
https://stackoverflow.com/questions/54886155/realtime-yolo-object-detection-using-laptop-webcam-in-google-colab
https://github.com/AlexeyAB/darknet/issues/2398
https://ithelp.ithome.com.tw/articles/10225527
https://ithelp.ithome.com.tw/articles/10226014
http://blog.ibanyez.info/blogs/coding/20190410-run-a-google-colab-notebook-to-train-yolov3-using-darknet-in/
https://stackoverflow.com/questions/58772581/how-to-use-yolov3-on-raspberry-pi-4-with-high-performance
https://colab.research.google.com/drive/1tbAeRge6KKgCYdC6ihDrsl80aRYoVOMa
https://zhuanlan.zhihu.com/p/54389036
https://colab.research.google.com/drive/14OyDrmxzBmkJ8H51iodPE2aXHzCduKJP#scrollTo=ZvptPv3iqEJ5
https://medium.com/pyladies-taiwan/深度學習新手村-pytorch入門-511df3c1c025
https://zhuanlan.zhihu.com/p/54350088
https://fgc.stpi.narl.org.tw/activity/videoDetail/4b1141305d9cd231015d9d0992ef0030
https://zhuanlan.zhihu.com/p/58776542
https://www.zhihu.com/appview/p/45845454 (國人佛心來著!)
https://github.com/pjreddie/darknet (原作者佛心來著!)
https://github.com/AlexeyAB/darknet (windows下安裝推!)
http://yy-programer.blogspot.com/2019/01/yolo-darknet.html (大推安裝好文!)
總之! 不要不信邪! 他要什麼版本的軟體你就照著他去弄! 不要像我一樣! 像個87試了老半天才成功!(淚灑!)
https://medium.com/@chih.sheng.huang821/深度學習-物件偵測yolov1-yolov2和yolov3-cfg-檔解讀-75793cd61a01
https://medium.com/@chih.sheng.huang821/深度學習-物件偵測yolov1-yolov2和yolov3-cfg-檔解讀-二-f5c2347bea68
https://medium.com/@wayne18308/yolo實作教學-train出屬於自己的model使用darkflow-windows-9b633b7350d8
http://dreamisadream97.pixnet.net/blog/post/172166721-利用-yoiov3-訓練自己的數據-(詳細教學)
https://medium.com/雞雞與兔兔的工程世界/機器學習-ml-note-yolo-利用影像辨識做物件偵測-object-detection-的技術-3ad34a4cac70 ** yolov2 **
https://zhuanlan.zhihu.com/p/41230124
https://github.com/inhail/darkflow
https://medium.com/@yanweiliu/python影像辨識筆記-八-分別在windows和ubuntu-18-04上安裝並執行yolov3-使用gpu-d2b77347fde
https://medium.com/@yanweiliu/python影像辨識筆記-九之二-關於yolov3的一些心得-754b3a7e70e1
https://medium.com/@yanweiliu/python影像辨識筆記-九之三-yolov3結合深度學習的object-detector-65440b54422b
https://medium.com/@yanweiliu/nvidia-jetson-tx2學習筆記-三-安裝opencv-c62e2435ad57
https://tzutalin.github.io/labelImg/
https://github.com/thtrieu/darkflow
ninja 潮他媽的!
https://medium.com/@yanweiliu/raspberry-pi學習筆記-二十七-在pi上執行yolov3-9cf124d5d582
https://github.com/pjreddie/darknet/issues/568
https://stackoverflow.com/questions/54068396/should-i-change-the-value-of-anchors-in-yolo-obj-cfg
https://stackoverflow.com/questions/56442413/generating-anchor-boxes-using-k-means-clustering-yolo
https://www.angtk.com/article/56
https://github.com/pjreddie/darknet/issues/911
https://www.zhihu.com/question/53405779
https://blog.csdn.net/hysteric314/article/details/54093734
https://ithelp.ithome.com.tw/articles/10190971 遷移學習
https://hackmd.io/@allen108108/r1-wSTAjS 好心人
技能樹:
機器學習(ML)範圍:
深度學習(DL)範圍:
影像方面:
文字方面:
把物件存成檔案!XD
https://morvanzhou.github.io/tutorials/python-basic/basic/13-08-pickle/
https://www.jianshu.com/p/18dabefa6778
https://www.twblogs.net/a/5b8fccbb2b71776722159c6f
https://blog.csdn.net/baoqian1993/article/details/52116164
http://changtw-blog.logdown.com/posts/895468-python-numpy-axis-concept-organize-notes
https://medium.com/@weilihmen/python-pandas-基本操作教學-成績表-f6d0ec4f89
https://colab.research.google.com/notebooks/mlcc/intro_to_pandas.ipynb colab有關pandas的入門教學
https://blog.csdn.net/qq1483661204/article/details/77587881 iloc用法
https://www.itread01.com/content/1542579970.html
https://codertw.com/程式語言/565247/
https://blog.gtwang.org/programming/opencv-basic-image-read-and-write-tutorial/ 基本讀取操作
http://jennaweng0621.pixnet.net/blog/post/403254017-opencv-彩色轉灰階(rgb-to-gray)
https://blog.csdn.net/on2way/article/details/46812121 反相黑白
https://www.jianshu.com/p/3977d674da85
http://monkeycoding.com/?page_id=12
https://medium.com/python4u/用conda建立及管理python虛擬環境-b61fd2a76566
https://tomkuo139.blogspot.com/2018/03/anaconda-tensorflow-keras.html 安裝tensorflow keras
http://opus.konghy.cn/ipynb/jupyter-notebook-keyboard-shortcut.html
https://www.books.com.tw/products/0010822932 (o) 推推推
https://www.books.com.tw/products/0010761759 (o) (大大大大大推)
https://www.books.com.tw/products/0010817138 (x)
https://www.books.com.tw/products/0010754327?sloc=reprod_i_10 (x)
http://tensorflowkeras.blogspot.com/2017/08/keras.html (x)
https://www.books.com.tw/products/0010822845?sloc=reprod_i_11 (o) 不太推
https://www.books.com.tw/products/0010811811 (x, 評價…恩)
https://www.books.com.tw/products/0010797283?loc=P_asb_002 (o)
…(待增加)
https://zh-tw.coursera.org/learn/machine-learning 史丹佛大學 吳恩達教授
https://www.youtube.com/channel/UC2ggjtuuWvxrHHHiaDH1dlQ 台大 李宏毅教授
https://www.idomaths.com/zh-Hant/probability5.php 貝式定理
https://medium.com/@c824751/confusion-matrix-混淆矩陣-f6ddf6e6aa58 混淆矩陣
https://medium.com/@chih.sheng.huang821/機器學習-統計方法-模型評估-驗證指標-b03825ff0814
https://blog.csdn.net/hjxu2016/article/details/72817374 機器學習之中的混淆矩陣
https://kknews.cc/zh-tw/news/ma2g9n9.html 甚麼是tensor(張量)
似然函數及最大似然估計法(經二項分布) https://pansci.asia/archives/124043
由結果去求原始的機率
e.g. 取10顆球有1顆紅球的機率為0.1
其實就是代表「取10顆球有1顆紅球的機率「最有」可能是10%,可能還是有誤差!!!
https://kknews.cc/zh-tw/game/j6vgbnl.html (最大似然估計法)
而極大似然法就是令樣本出現的機率最大,進而估計整體的模型參數。
(最符合這個(觀察出來的)機率分佈的模型)
http://ccckmit.wikidot.com/st:maximumlikelihood (最大似然估計法)
因此,設定 p(x)=p′(x) 的想法,其背後的目標乃是要最大化機率原模型 p 產生 p' 現象的可能性,這個最大化的目標就稱為最大似然法則。