ccc970307
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    import pandas as pd import numpy as np import math import matplotlib.pyplot as plt import warnings #Remove warning message import seaborn as sns from sklearn.model_selection import train_test_split from scipy.stats.stats import pearsonr warnings.simplefilter("ignore", RuntimeWarning) warnings.simplefilter('ignore', FutureWarning) data_file='Group_2_1Daily Crude Oil WTI Futures Historical Data.csv' #data_file='Group_2_2Daily US Dollar Index Futures Historical Data.csv' def load_data(fname): data=pd.read_csv(fname,parse_dates=['Date']) return data def update_ma(row, rows, n): # rows contains history update to yesterday if len(rows) < n-1: return None else: price_history =[] for i in range(1, n): price_history.append(rows[-i]['Price']) average = (sum(price_history) + row['Price'])/n return average def update_trend(r): try: if r['ma5'] > r['ma30']: return 'UP' else: return 'DOWN' except: return None def get_reversalpts(r,rows): if len(rows) < 30: return None elif r['trend']!=rows[-1]['trend']: if rows[-1]['trend']=='UP': return 1 # up to down else: return -1 # down to up else: return 0 def update_weekday(row): t=row['Date'] return t.day_name() def update_year(row): t=row['Date'] return t.year def update_season(r,row): t=row['Date'] if t.month_name()=='March'or t.month_name()=='April'or t.month_name()=='May': return 'Spring' elif t.month_name()=='June'or t.month_name()=='July'or t.month_name()=='August': return 'Summer' elif t.month_name()=='September'or t.month_name()=='October'or t.month_name()=='November': return 'Autumn' else: return 'Winter' def dictionary(file_data1, file_data2): zipfile = dict(zip(file_data1,file_data2)) return zipfile def dictionary_into_r(r,zipfile): try: vardata=zipfile[r['year']] return vardata except: return None #Relative Strength Index with period 14days def RSI(r,row,rows): gain,loss=[],[] if r['Price']>=row['Open']: gain=r['Price']-row['Open'] loss=0 else: gain=0 loss=row['Open']-r['Price'] if len(rows) < 13: avegain=None aveloss=None rsi= None elif len(rows)<14: gain_history =[] loss_history =[] for i in range(1, 14): gain_history.append(rows[-i]['Gain']) loss_history.append(rows[-i]['Loss']) avegain = (sum(gain_history)+gain)/14 aveloss = (sum(loss_history)+loss)/14 rs=avegain/aveloss rsi=(100-(100/(1+rs))) else: avegain=((rows[-1]['avegain']*13)+gain)/14 aveloss=((rows[-1]['aveloss']*13)+loss)/14 rs=avegain/aveloss rsi=(100-(100/(1+rs))) return gain, loss,avegain,aveloss,rsi def RateofChangeinPrice(row,rows): if len(rows)<1: return None else: roc=((row['Price']-rows[-1]['Price'])/rows[-1]['Price'])*100 return roc def Duration_of_TrendReversal(i,r,first,j): if r['reversal']== 1 or r['reversal'] == -1: if first is True: duration=0 j=i first=False else: duration=i-j j=i else: duration=0 return duration,first,j def ROCfromLatestReversalPoint(r,row,rows,firstII,latestprice): if len(rows)<30: roc=None elif r['reversal']== 1 or r['reversal'] == -1: if firstII is True: latestprice=row['Price'] roc=None firstII=False else: roc=(row['Price']-latestprice)/(latestprice)*100 latestprice=row['Price'] elif firstII is False: roc=(row['Price']-latestprice)/(latestprice)*100 else: roc=None return roc,firstII,latestprice def update_std(r,row, rows, n): # rows contains history update to yesterday if len(rows) < n-1: return None else: SMA=update_ma(row, rows, n=20) price_MinusMean =[] for i in range(1, n): price_MinusMean.append((rows[-i]['Price']-SMA)**2) std = math.sqrt((sum(price_MinusMean) + (row['Price']-SMA)**2)/(n-1)) return std #Bollinger bandwidth[2,20] def Bollinger_Bandwidth(r,row,rows,n): if len(rows) < n-1: middle_band=None upper_band=None lower_band=None bandwidth=None else: middle_band=update_ma(row, rows, n=20) #SMA(20) stdv=r['std20']#20 period std deviation upper_band=middle_band+2*stdv lower_band=middle_band-2*stdv bandwidth=(upper_band-lower_band)/(middle_band) return middle_band,upper_band,lower_band,bandwidth def BollMarket_trend(r,row,rows,n): #determine Bull/ Bear using Bollinger band if len(rows) < n-1: market_trend=None elif row['Price']>=r['Upper Band']: market_trend='Bull' elif row['Price']<=r['Lower Band']: market_trend='Bear' else: market_trend='Neutral' return market_trend def get_ema(r,row,rows,n): if len(rows) < n-1: return None elif len(rows)<n: price_history =[] for i in range(1,n): price_history.append(rows[-i]['Price']) mean = (sum(price_history) + row['Price'])/n return mean else: k=2/(n+1) ema=(row['Price']*k)+(rows[-1]['EMA%s'%n]*(1-k)) return ema # MACD with 12period EMA and 26period EMA def MACD(r,rows): if len(rows) < 25: macd=None else: macd=r['EMA12']-r['EMA26'] return macd def Open_PriorClose(row,rows): # get difference between today open and prior close if len(rows) < 1: return None else: diff=row['Open']-rows[-1]['Price'] return diff def Stochastic_Oscillator(i,row,rows,data): if len(rows) < 13: Min=None Max=None K=None else: high_history =[] low_history=[] for j in range(1, 14): high_history.append(data.High[i-j]) low_history.append(data.Low[i-j]) high_history.append(row['High']) low_history.append(row['Low']) Min=min(low_history) Max=max(high_history) K=(row['Price']-Min)/(Max-Min)*100 if len(rows)<15: sto=None else: k_history=[] for i in range(1, 3): k_history.append(rows[-i]['K%']) sto=(sum(k_history)+K)/3 return K,sto #Rate of change of candlestick body size def ROC_candlestick_body(r,row,rows): if row['Open']>=r['Price']: size=row['Open']-r['Price'] else: size=r['Price']-row['Open'] if len(rows)<1: roc=None elif rows[-1]['CandleSize']==0: roc=0 else: roc=(size-rows[-1]['CandleSize'])/(rows[-1]['CandleSize']) return size,roc #Average true range(14periods) def ATR(row,rows): if len(rows)<1: TR=row['High']-row['Low'] else: TR=max(row['High']-row['Low'],abs(row['High']-rows[-1]['Price']),abs(row['Low']-rows[-1]['Price'])) if len(rows)<13: ATR=None elif len(rows)<14: TR_history=[] for i in range(1, 14): TR_history.append(rows[-i]['TR']) ATR=(sum(TR_history)+TR)/14 else: ATR=((rows[-1]['ATR']*13)+TR)/14 return TR,ATR #sum of reversal point before 20 days period def sum_ofreversal(r,rows): if len(rows)<50: return None else: counter=0 for i in range(1, 21): if rows[-i]['reversal']== 1 or rows[-i]['reversal']== -1: counter+=1 return counter #Chaikin Money Flow(Period,20) def CMF(row,rows): MFM=((row['Price']-row['Low'])-(row['High']-row['Price']))/(row['High']-row['Low']) #Money Flow Multiplier MFV=MFM*row['Vol.'] #Money Flow Volume if len(rows) < 19: CMF= None else: MFV_history =[] vol_history=[] for i in range(1, 20): MFV_history.append(rows[-i]['MFV']) vol_history.append(rows[-i]['Volume']) sumMFV = sum(MFV_history) + MFV sumVol=sum(vol_history)+row['Vol.'] CMF=sumMFV/sumVol return MFM,MFV,CMF # Williams %R / Williams Percent Range def william(n, r, rows): n_price = [] if len(rows) < n: return None else: for i in range (1,n): n_price.append(rows [-i]['Price']) highest_high = max(n_price) lowest_low = min(n_price) close = r['Price'] william = (highest_high - close)/ (highest_high - lowest_low) return william def typicalprice(row): #for CCI and MFI TP1 = (row['High'] + row['Low'] + row['Price']) meanTP1 = np.mean(TP1) return meanTP1 def typicalpriceCCI(n,rows): #for CCI t_price = [] if len(rows) < n: return None else: for i in range (1,n): t_price.append(rows[-i]['Typical Price']) typicalpriceCCI = sum(t_price) return typicalpriceCCI def maCCI(n,rows): #for CCI ma = [] if len(rows) < n: return None else: for i in range (1,n): if rows[-i]['Typical Price for CCI'] is None: ma.append(0) else: ma.append(rows[-i]['Typical Price for CCI']) maCCI = sum(ma)/n return maCCI def meandeviation(n,rows): #for CCI md=[] if len(rows) < n: return None else: for i in range (1,n): if rows[-i]['Typical Price for CCI'] is None or rows[-i]['MA for CCI'] is None: md.append(0) else: md.append(abs(rows[-i]['Typical Price for CCI'])-(rows[-i]['MA for CCI'])) meandeviation=(sum(md))/n return meandeviation #Commodity Channel Index def CCI(r,constant): if r['Typical Price for CCI'] == None or r['MA for CCI'] == None or r['Mean Deviation'] == None: return None else: CCI = (r['Typical Price for CCI']-r['MA for CCI'])/(constant * r['Mean Deviation']) return CCI def typicalprice_trend(r,rows): #for MFI if len(rows) > 0: if r['Typical Price'] < rows[-1]['Typical Price']: return -1 elif r['Typical Price'] > rows[-1]['Typical Price']: return 1 else: return None else: return None def rawmoneyflow(r,row): #for MFI rmf = r['Typical Price'] * row['Vol.'] return rmf def moneyflow_ratio(n,r,rows): #for MFI positivemf=[] negativemf=[] days = len(rows) if days < n: return None else: for i in range (1,n): if rows[-i]['Typical Price Trend'] == 1: positivemf.append(rows[-i]['Typical Price']) elif rows[-i]['Typical Price Trend'] == -1: negativemf.append(rows[-i]['Typical Price']) else: pass positive=sum(positivemf) negative=sum(negativemf) mfratio=positive/negative return mfratio #Money Flow Index def MFI(r): if r['Money Flow Ratio'] == None: return 0 else: mfi = 100 -(100/(1 + r['Money Flow Ratio'])) return mfi def candlestick_pattern(row,rows): if row['Open']>row['Price'] and ((row['Price']-row['Low'])/(row['High']-row['Low']))>=0.75: pattern1='Hammer' elif row['Price']>row['Open'] and ((row['Open']-row['Low'])/(row['High']-row['Low']))>=0.65: pattern1='Hammer' elif row['Open']>row['Price'] and ((row['High']-row['Open'])/(row['High']-row['Low']))>=0.7: pattern1='ShootingStar' elif row['Price']>row['Open'] and ((row['High']-row['Price'])/(row['High']-row['Low']))>=0.8: pattern1='ShootingStar' else: pattern1='Neutral 1' if len(rows)<1: pattern2=None elif (rows[-1]['Open']>rows[-1]['Price']) and (row['Price']>rows[-1]['Open']) and (rows[-1]['Price']>=row['Open']) and ((row['Price']-row['Open'])>(rows[-1]['Open']-rows[-1]['Price'])): pattern2='Bull 2' elif (rows[-1]['Price']>rows[-1]['Open']) and (row['Open']>rows[-1]['Price']) and (rows[-1]['Open']>=row['Price']) and ((row['Open']-row['Price'])>(rows[-1]['Price']-rows[-1]['Open'])) : pattern2='Bear 2' else: pattern2='Neutral 2' if len(rows)<1: pattern3=None elif (rows[-1]['Open']>rows[-1]['Price']) and (row['Price']>row['Open']) and (row['Price']>=(0.5*(rows[-1]['Open']+rows[-1]['Price']))): pattern3='PiercingLine' elif (rows[-1]['Price']>rows[-1]['Open']) and (row['Open']>row['Price']) and (row['Price']>=(0.5*(rows[-1]['Open']+rows[-1]['Price']))): pattern3='DarkCloudCover' else: pattern3='Neutral 3' if len(rows)<3: pattern4=None elif (rows[-3]['Open']>rows[-3]['Price']) and (rows[-2]['Price']>rows[-2]['Open']) and (rows[-1]['Price']>rows[-2]['Price']) and (row['Price']>rows[-1]['Price']): pattern4='3WhiteSoldier' elif (rows[-3]['Price']>rows[-3]['Open']) and (rows[-2]['Open']>rows[-2]['Price']) and (rows[-2]['Price']>rows[-1]['Price']) and (rows[-1]['Price']>row['Price']): pattern4='3BlackCrows' else: pattern4='Neutral_4' return pattern1, pattern2, pattern3, pattern4 def CreateDummies(data): for i in dummies: x = pd.get_dummies(data[i]) data = pd.concat([data,x],axis=1) return data def RemoveNone(df): #Remove incomplete row from snapshot df=df.where((pd.notnull(df)), None) df = df[df.astype(str).ne('None').all(1)] df = df.reset_index(drop=True) return df def main(): data=load_data(data_file) data2=pd.read_csv('Group_2_Central Government Debt (Percent of GDP).csv') data3=pd.read_csv('Group_2_GDP US.csv') data4=pd.read_csv('Group_2_Interest Rate US.csv') data5=pd.read_csv('Group_2_Inflation Rate US.csv') data6=pd.read_csv('Group_2_Unemployment Rate.csv') data7=pd.read_csv('Group_2_Net Trade In Goods.csv') data2_dict = dictionary(data2['Year'], data2['United States']) data3_dict = dictionary(data3['Year'], data3['GDP US (Billions in Dollars)']) data4_dict = dictionary(data4['Year'], data4['Interest Rate US (%)']) data5_dict = dictionary(data5['Year'], data5['Inflation Rate US (%)']) data6_dict = dictionary(data6['Year'], data6['Unemployment Rate (%)']) data7_dict = dictionary(data7['Year'], data7['Net Trade in Goods United States (Billions in Dollars)']) rows=[]#containers for each row first=True firstII=True j=[] latestprice=[] for i, row in data.iterrows(): r={} r['Price'],r['Open'],r['Volume']=row['Price'],row['Open'],row['Vol.'] r['ma5'] = update_ma(row, rows, n=5) r['ma30'] = update_ma(row, rows, n=30) r['trend'] = update_trend(r) r['reversal']=get_reversalpts(r,rows) r['Weekday']=update_weekday(row) r['year']=update_year(row) r['Season']=update_season(r,row) r['Gain'],r['Loss'],r['avegain'],r['aveloss'],r['RSI']= RSI(r,row,rows) r['Rate of Change in Price%']=RateofChangeinPrice(row,rows) r['Duration'],first,j=Duration_of_TrendReversal(i,r,first,j) r['ROCfromLatestReversalPoint%'],firstII,latestprice=ROCfromLatestReversalPoint(r,row,rows,firstII,latestprice) r['std20']=update_std(r,row, rows, n=20)#for finding Bollinger and as a variable(volatility) r['Middle Band'],r['Upper Band'],r['Lower Band'],r['Bandwidth']=Bollinger_Bandwidth(r,row,rows,n=20) r['Bollinger Market Trend']=BollMarket_trend(r,row,rows,n=20) r['EMA12']=get_ema(r,row,rows,n=12) r['EMA26']=get_ema(r,row,rows,n=26) r['MACD']=MACD(r,rows) r['Dif bet Open& Prior Close']=Open_PriorClose(row,rows) r['K%'],r['StoOsci%']=Stochastic_Oscillator(i,row,rows,data) r['CandleSize'],r['ROC of Candlestick size']=ROC_candlestick_body(r,row,rows) r['TR'],r['ATR']=ATR(row,rows) r['Sum of reversal']=sum_ofreversal(r,rows) r['MFM'],r['MFV'],r['CMF']=CMF(row,rows) r['William']=william(14,r,rows) r['Typical Price']=typicalprice(row) r['Typical Price for CCI']=typicalpriceCCI(20,rows) r['MA for CCI']=maCCI(20,rows) r['Mean Deviation']=meandeviation(20,rows) r['CCI']=CCI(r,constant=0.015) r['Raw Money Flow']=rawmoneyflow(r,row) r['Typical Price Trend']=typicalprice_trend(r,rows) r['Money Flow Ratio']=moneyflow_ratio(20,r,rows) r['MFI']= MFI(r) r['Pattern 1'], r['Pattern 2'], r['Pattern 3'], r['Pattern 4']=candlestick_pattern(row,rows) r['Government Debt United States']=dictionary_into_r(r,data2_dict) r['GDP United States(Billions in Dollars)']=dictionary_into_r(r,data3_dict) r['Interest Rate United States']=dictionary_into_r(r,data4_dict) r['Inflation Rate United States']=dictionary_into_r(r,data5_dict) r['Unemployment Rate United States']=dictionary_into_r(r,data6_dict) r['Net Trade in Goods United States']=dictionary_into_r(r,data7_dict) rows.append(r) df=pd.DataFrame(rows) df.drop(['Open','EMA12','EMA26','Gain','Loss','avegain','aveloss','K%','TR','CandleSize','Typical Price','Typical Price for CCI','MA for CCI','Mean Deviation','Raw Money Flow','Typical Price Trend','Money Flow Ratio','MFM','MFV'],axis=1,inplace=True) return data,df def extractdata(df2): reversaldata = pd.concat([df2[df2.reversal == -1], df2[df2.reversal== 1]]) nonreversaldata=df2[df2.reversal== 0].sample(n=len(reversaldata),random_state=10) extracteddata=pd.concat([reversaldata,nonreversaldata]).reset_index(drop=True) del extracteddata['Volume'], extracteddata['trend'],extracteddata['Pattern 1'],extracteddata['Pattern 2'],extracteddata['Pattern 3'],extracteddata['Pattern 4'],extracteddata['year'], extracteddata['ma30'],extracteddata['ma5'] col=['ATR','Bandwidth', 'CCI','CMF','Dif bet Open& Prior Close','Duration','MACD','MFI','Price','ROC of Candlestick size', 'ROCfromLatestReversalPoint%', 'RSI','Rate of Change in Price%','StoOsci%','Sum of reversal','William', 'reversal','std20' ] for i in col: extracteddata[i]=pd.to_numeric(extracteddata[i], errors='coerce') return reversaldata,nonreversaldata,extracteddata def Visualisation(extracteddata,data,df): #to check missing values # ============================================================================= # fig,ax=plt.subplots() # sns.heatmap(extracteddata.isnull(),cbar=False,yticklabels=False,cmap = 'viridis') # ============================================================================= cols=['ATR','Bandwidth', 'CCI','CMF','Dif bet Open& Prior Close','Duration','MACD','MFI','Price','ROC of Candlestick size', 'ROCfromLatestReversalPoint%', 'RSI','Rate of Change in Price%','StoOsci%','Sum of reversal','William', 'reversal','std20' ] visualdata=extracteddata[cols] l = visualdata.columns.values number_of_columns=18/2 number_of_rows = ((len(l)/2)-1)/number_of_columns plt.figure(figsize=(1.5*number_of_columns,5*number_of_rows)) for i in range(0,9): plt.figure(1).suptitle('Boxplot 1',fontsize=14) #to identify outliers plt.subplot(number_of_rows + 1,number_of_columns,i+1) sns.set_style('whitegrid') sns.boxplot(visualdata[l[i]],color='green',orient='v') plt.tight_layout() plt.figure(figsize=(1.5*number_of_columns,5*number_of_rows)) for i in range(0,9): plt.figure(2).suptitle('Boxplot 2',fontsize=14) plt.subplot(number_of_rows + 1,number_of_columns,i+1) sns.set_style('whitegrid') sns.boxplot(visualdata[l[i+9]],color='green',orient='v') plt.tight_layout() for i in range(0,9): plt.figure(3).suptitle('Distribution Plot 1',fontsize=14) #to determine skewness plt.subplot(3,3,i+1) sns.distplot(visualdata[l[i]],kde=True) plt.tight_layout() for i in range(0,9): plt.figure(4).suptitle('Distribution Plot 2',fontsize=14) plt.subplot(3,3,i+1) sns.distplot(visualdata[l[i+9]],kde=True) plt.tight_layout() cols2=['ATR','Bandwidth','Dif bet Open& Prior Close','Duration','Price','ROC of Candlestick size','Rate of Change in Price%','William', 'reversal','std20' ] visualdata2=extracteddata[cols2] rets2=visualdata2.pct_change() corr=rets2.corr(method='pearson') plt.figure(5).suptitle('Heat Map',fontsize=14) sns.heatmap(corr,xticklabels=corr.columns.values,yticklabels=corr.columns.values,annot=True,annot_kws={'size':12}) heat_map=plt.gcf() heat_map.set_size_inches(14,10) plt.xticks(fontsize=8) plt.yticks(fontsize=10) plt.show() plt.figure(6).suptitle('Bollinger Market Trend Barchart',fontsize=14) sns.countplot(x="reversal", hue="Bollinger Market Trend", data=extracteddata) plt.show() # ============================================================================= # cols3=['MFI', 'ROCfromLatestReversalPoint%', 'RSI','StoOsci%'] # visualdata3=extracteddata[cols3] # rets3=visualdata3.pct_change() # sns.pairplot(rets3,height=2).fig.suptitle('Scatter Plot',fontsize=14) # plt.show() # ============================================================================= #Sum of Reversal and Rate of Change from Latest Reversal Point% fig, ax = plt.subplots() ax.scatter(extracteddata['Sum of reversal'], extracteddata['ROCfromLatestReversalPoint%']) ax.set_xlabel('SumOfReversal') ax.set_ylabel('ROCfromLatestReversalPoint') ax.set_title('Relationship between SumOfReversal & ROCfromLatestReversalPoint') plt.show() #Standard deviation 20 and Rate of Change in Price% fig, ax = plt.subplots() ax.scatter(extracteddata['std20'], extracteddata['Rate of Change in Price%']) ax.set_xlabel('Std20') ax.set_ylabel('RateofChangeinPrice') ax.set_title('Relationship between Std20 & RateofChangeinPrice') plt.show() #RSI and MFI fig, ax = plt.subplots() ax.scatter(extracteddata.RSI, extracteddata.MFI, c= np.random.rand(len(extracteddata)), alpha=0.5) ax.set_xlabel('RSI', fontsize=15) ax.set_ylabel('MFI', fontsize=15) ax.set_title('RSI and MFI') ax.grid(True) fig.tight_layout() plt.show() #Season plt.figure(10).suptitle('Reversal Point of Season',fontsize=14) sns.countplot(x='Season',hue='reversal', data=extracteddata) plt.show() #Weekday plt.figure(11).suptitle('Reversal Point of Weekday',fontsize=14) sns.countplot(x='Weekday',hue='reversal', data=extracteddata) plt.show() #Unemployment Rate, Inflation Rate and Net Trade in Goods plt.figure(12) x = extracteddata['Inflation Rate United States'] y = extracteddata['Unemployment Rate United States'] z = extracteddata['Net Trade in Goods United States'] plt.subplot(211) plt.scatter(y, x, color = 'r') plt.xlabel('Unemployment Rate (%)') plt.ylabel('Inflation Rate (%)') plt.title('Relationship between Unemployment Rate and Inflation Rate') plt.subplot(212) plt.scatter(y, z, color = 'g') plt.xlabel('Unemployment Rate (%)') plt.ylabel('Net Trade in Goods (Billions in Dollars)') plt.title('Relationship between Unemployment Rate and Net Trade in Goods') plt.tight_layout() plt.show() #Inflation Rate and Interest Rate fig,ax=plt.subplots() ax.plot(extracteddata['Interest Rate United States'], extracteddata['Inflation Rate United States'], '^',alpha=0.5) ax.set_title('Relationship between Interest Rate and Inflation Rate') ax.set_xlabel("Interest Rate") ax.set_ylabel("Inflation Rate") plt.show() #ATR and Bandwidth fig,ax=plt.subplots() plt.plot(data.Date,df.ATR,color='yellow',label ='ATR') plt.plot(data.Date,df.Bandwidth,color='red',label ='Bandwidth') plt.title('Relationsip between ATR and Bandwidth') plt.xlabel("Years") plt.ylabel("Value of ATR and Bandwidth") plt.legend() plt.show() #Reversal Points fig,ax=plt.subplots() plt.plot(data.Date,df.ma5,color='yellow',label='ma5') plt.plot(data.Date,df.ma30,color='red',label='ma30') plt.plot(data.Date,data.Price,label='Price') for i in range (len(df.Price)): if df.reversal[i] == 1 or df.reversal[i] == -1: plt.plot(data.Date[i], data.Price[i], marker='o', color='purple') plt.legend() plt.show() data,df=main() dummies=['Bollinger Market Trend','Pattern 1','Pattern 2','Pattern 3','Pattern 4'] df = CreateDummies(df) df2=RemoveNone(df) reversaldata,nonreversaldata,extracteddata=extractdata(df2) Visualisation(extracteddata,data,df) def removenone(extracteddata): extracteddata=extracteddata.where((pd.notnull(extracteddata)), None) extracteddata = extracteddata[extracteddata.astype(str).ne('None').all(1)] extracteddata = extracteddata.reset_index(drop=True) return extracteddata def testsplit(x,y): x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=1) return x_train, x_test, y_train, y_test def normalisation(): normalisation = sklearn.preprocessing.normalise() return normalisation

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully