# 變分法入門
###### tags: `physics`
#### Euler-Lagrange equation
#### Question:
假設路徑$y=f(x)$,從$(x_1,f(x_1))$到$(x_2,f(x_2))$,試求$f(x)$之微分方程,使$H(y',y,x)=\int_{x_1}^{x_2}F(y',y,x)\,dx$有最小值。
##### Answer:
p.s. 此非正規證明,僅是一個簡易推導
因為要求$H$有最小值,因此對於任意微小偏移量$\eta(x)$($\because$所有路徑皆必須有相同起始點和終點,$\therefore \eta(x_1)=0$且$\eta(x_2)=0$),$H$之變化量(稱為$H$的變分$\delta H$)應為0。
$$
\delta H=\int_{x_1}^{x_2}F((y+\eta)',y+\eta,x)-F(y',y,x)\,dx\\
=\int_{x_1}^{x_2}F(y'+\eta',y+\eta,x)-F(y',y,x)\,dx\\
=\int_{x_1}^{x_2}\frac{\partial F}{\partial y}\eta+
\frac{\partial F}{\partial y'}\eta'\,dx\\
=\int_{x_1}^{x_2}\frac{\partial F}{\partial y}\eta \,dx
+[\frac{\partial F}{\partial y'}\eta]_{x_1}^{x_2}
-\int_{x_1}^{x_2}\frac{d}{dx}\frac{\partial F}{\partial y'}\eta\,dx\\
=\int_{x_1}^{x_2}(\frac{\partial F}{\partial y}
-\frac{d}{dx}\frac{\partial F}{\partial y'})\eta\,dx
$$
$\because$我們要求$y=f(x)$使得$H(y',y,x)$有最小值
$$
\therefore \forall \eta,\delta H=0\\
\Rightarrow \frac{\partial F}{\partial y}
-\frac{d}{dx}\frac{\partial F}{\partial y'}=0
$$
此式稱為歐拉─拉格朗日方程式(Euler-Lagrange equation)。
#### Reference
1. [Feynman's Lecture on Physics:Volume II Chapter 19](https://www.feynmanlectures.caltech.edu/II_19.html)