# 變分法入門 ###### tags: `physics` #### Euler-Lagrange equation #### Question: 假設路徑$y=f(x)$,從$(x_1,f(x_1))$到$(x_2,f(x_2))$,試求$f(x)$之微分方程,使$H(y',y,x)=\int_{x_1}^{x_2}F(y',y,x)\,dx$有最小值。 ##### Answer: p.s. 此非正規證明,僅是一個簡易推導 因為要求$H$有最小值,因此對於任意微小偏移量$\eta(x)$($\because$所有路徑皆必須有相同起始點和終點,$\therefore \eta(x_1)=0$且$\eta(x_2)=0$),$H$之變化量(稱為$H$的變分$\delta H$)應為0。 $$ \delta H=\int_{x_1}^{x_2}F((y+\eta)',y+\eta,x)-F(y',y,x)\,dx\\ =\int_{x_1}^{x_2}F(y'+\eta',y+\eta,x)-F(y',y,x)\,dx\\ =\int_{x_1}^{x_2}\frac{\partial F}{\partial y}\eta+ \frac{\partial F}{\partial y'}\eta'\,dx\\ =\int_{x_1}^{x_2}\frac{\partial F}{\partial y}\eta \,dx +[\frac{\partial F}{\partial y'}\eta]_{x_1}^{x_2} -\int_{x_1}^{x_2}\frac{d}{dx}\frac{\partial F}{\partial y'}\eta\,dx\\ =\int_{x_1}^{x_2}(\frac{\partial F}{\partial y} -\frac{d}{dx}\frac{\partial F}{\partial y'})\eta\,dx $$ $\because$我們要求$y=f(x)$使得$H(y',y,x)$有最小值 $$ \therefore \forall \eta,\delta H=0\\ \Rightarrow \frac{\partial F}{\partial y} -\frac{d}{dx}\frac{\partial F}{\partial y'}=0 $$ 此式稱為歐拉─拉格朗日方程式(Euler-Lagrange equation)。 #### Reference 1. [Feynman's Lecture on Physics:Volume II Chapter 19](https://www.feynmanlectures.caltech.edu/II_19.html)