Try   HackMD
tags: machine learning|python

機器學習 - 簡單線性回歸(Simple Linear Regression)

介紹

一個應變數(

Y)和一個自變數(
X
)之線性關係(皆為連續型數)

目的:

  • 解釋data過去現象
  • 利用自變數(
    X
    )來預測應變數(
    Y
    )的未來可能數值

方程式:

y=b0+b1x1


練習

機器學習-作業4

# Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv("Salary_Data.csv") x = dataset.iloc[:, :-1].values y = dataset.iloc[:, 1].values ''' # Missing Data # Categorical Data ''' # Splitting the Dataset into the Training set and Test set from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0) ''' # Feature Scaling ''' # Simple Linear Regression from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(x_train, y_train) y_pred = regressor.predict(x_test) plt.scatter(x_train, y_train, color = 'red') plt.plot(x_train, regressor.predict(x_train), color = 'blue') plt.title("Salary vs Experience (training set)") plt.xlabel("Years of Experience") plt.ylabel("Salary") plt.show() plt.scatter(x_test, y_test, color = 'red') plt.plot(x_train, regressor.predict(x_train), color = 'blue') plt.title("Salary vs Experience (testing set)") plt.xlabel("Years of Experience") plt.ylabel("Salary") plt.show()