###### tags: `machine learning`|`python`
# 機器學習 - 簡單線性回歸(Simple Linear Regression)
## 介紹
<font color="#3355FF">**一個**</font>應變數($Y$)和<font color="#3355FF">**一個**</font>自變數($X$)之<font color="#008000">線性關係</font>(皆為<font color="#f00">連續型數</font>)
> 目的:
> * 解釋data過去現象
> * 利用自變數($X$)來預測應變數($Y$)的未來可能數值
---
方程式:$y = b_0 + b_1x_1$



---
## 練習
機器學習-作業4

```python=
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv("Salary_Data.csv")
x = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values
'''
# Missing Data
# Categorical Data
'''
# Splitting the Dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
'''
# Feature Scaling
'''
# Simple Linear Regression
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(x_train, y_train)
y_pred = regressor.predict(x_test)
plt.scatter(x_train, y_train, color = 'red')
plt.plot(x_train, regressor.predict(x_train), color = 'blue')
plt.title("Salary vs Experience (training set)")
plt.xlabel("Years of Experience")
plt.ylabel("Salary")
plt.show()
plt.scatter(x_test, y_test, color = 'red')
plt.plot(x_train, regressor.predict(x_train), color = 'blue')
plt.title("Salary vs Experience (testing set)")
plt.xlabel("Years of Experience")
plt.ylabel("Salary")
plt.show()
```