$x_t=a_0w_t +a_1w_{t-1}$
$\text{Var}(x_t)$=$\text{Var}(a_0w_t +a_1w_{t-1})$
Assume $w_t, w_{t-1}$ are independent. Then variances of sum is sum of variances.
$\text{Var}(x_t) = \text{Var}(a_0 w_t) + \text{Var}(a_1 w_{t-1})$
$Var(x_t)$ = $a_0^2\text{Var}(w_t)+a_1^2\text{Var}(w_{t-1})$
$w_t, w_{t-1}$ are both standard normal distributions. So their variance is 1:
$Var(x_t)$ = $a_0^2\text{Var}(w_t)+a_1^2\text{Var}(w_{t-1})$
$Var(x_t)$ = $a_0^2+a_1^2$
$E[x_t] =0$