binghua
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    --- title: 基礎數論 --- # 基礎數論 --- ### Tips 二進位的處理,使用**位元運算**<br> <span>```a >> 1``` 代表將其二進位右移一位<br>等價於 ```a / 2```</span><!-- .element: class="fragment" data-fragment-index="1" --> <span>```a & 1``` 代表將其二進位最低位取出<br>等價於 ```a % 2```</span><!-- .element: class="fragment" data-fragment-index="2" --> ---- ### ```a & 1``` | | | | | --- | --- | ---- | | | 12 | 1100 | | & | 1 | 0001 | | | 0 | 0000 | ---- ### ```a & 1``` | | | | | --- | --- | ---- | | | 13 | 1101 | | & | 1 | 0001 | | | 1 | 0001 | --- ## Basics ---- ### 除法演算法 $m = nq + r$,其中 $0 \leq r < n$ 記作 $r = m \bmod n$ <span>```m % n```</span><!-- .element: class="fragment" data-fragment-index="1" --> ---- ### 因數 $r$ 同時為 $n$ 和 $m$ 的因數<br>則稱 $r$ 為 $n$ 和 $m$ 的 **公因數** 最大的 $r$ 又稱為 **最大公因數** ---- ### 倍數 $r$ 同時為 $n$ 和 $m$ 的倍數<br>則稱為 **公倍數** 最小的 $r$ 稱為 **最小公倍數** ---- ### 互質 $\gcd(a, b) = 1$,稱 $a, b$ **互質** --- ## 最大公因數 ---- ### $\gcd$ & $\text{lcm}$ - $\gcd$ = **G**reatest **C**ommon **D**ivisor - $\text{lcm}$ = **L**east **C**ommon **M**ultiple ---- ### 輾轉相除法 $m = nq + r$ <br>$\gcd(m, n) = \gcd(n, r)$ <span>不斷地利用除法演算法</span><!-- .element: class="fragment" data-fragment-index="1" --> <span>便能將求最大公因數之問題規模縮小</span><!-- .element: class="fragment" data-fragment-index="2" --> <span>此算法稱為歐幾里得算法</span><!-- .element: class="fragment" data-fragment-index="3" --> <span>為求方便定義 $\gcd(n, 0) = n$</span><!-- .element: class="fragment" data-fragment-index="4" --> Note: 講義有證明 ---- ### 輾轉相除法 ```cpp= def gcd(a, b): if b == 0: return a return gcd(b, a % b) ``` ---- ### 複雜度 不斷折半 $\text{O}(\log(\max(a,\ b)))$ ---- ### 最小公倍數求法 $\ \gcd(a, b) \cdot \text{lcm}(a, b) = a \cdot b$ --- ## 質數 ---- ### 定義 當 $m$ 只有二個因數 我們稱 $m$ 為**質數** <span>不是質數的數則被稱為**合數**</span><!-- .element: class="fragment" data-fragment-index="1" --> ---- ### Why we need primes? 質數在乘法中是不可被拆解的單位 其也在數論中扮演重要的角色<!-- .element: class="fragment" data-fragment-index="1" --> ---- ### 篩法 一個合數必定是某個質數的倍數 把不可能成為質數的合數**篩**掉 留下的數字就會是質數 ---- ### Sieve of Eratosthenes 埃氏篩法 - 從 $2$ 開始往上 - 遇到質數 就把它的倍數標記為合數 - 遇到合數 跳過即可 ---- ### Example | | | | | | | | | | | | ----------------------------------------------------------------------------- | --------------------------------------------------------------------------- | ----------------------------------------------------------------------------- | ---------------------------------------------------------------------- | --------------------------------------------------------------------------- | ---------------------------------------------------------------------- | ----------------------------------------------------------------------------- | ---------------------------------------------------------------------- | ----------------------------------------------------------------------------- | ----------------------------------------------------------------------- | | 1<!-- .element: class="fragment fade-out" data-fragment-index="1" --> | 2<!-- .element: class="fragment highlight-blue" data-fragment-index="2" --> | 3<!-- .element: class="fragment highlight-blue" data-fragment-index="4" --> | 4<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 5<!-- .element: class="fragment highlight-blue" data-fragment-index="6" --> | 6<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 7<!-- .element: class="fragment highlight-blue" data-fragment-index="8" --> | 8<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 9<!-- .element: class="fragment fade-out" data-fragment-index="5" --> | 10<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | | 11<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 12<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 13<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 14<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 15<!-- .element: class="fragment fade-out" data-fragment-index="5" --> | 16<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 17<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 18<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 19<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 20<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | | 21<!-- .element: class="fragment fade-out" data-fragment-index="5" --> | 22<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 23<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 24<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 25<!-- .element: class="fragment fade-out" data-fragment-index="7" --> | 26<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 27<!-- .element: class="fragment fade-out" data-fragment-index="5" --> | 28<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 29<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 30<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | | 31<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 32<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 33<!-- .element: class="fragment fade-out" data-fragment-index="5" --> | 34<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 35<!-- .element: class="fragment fade-out" data-fragment-index="7" --> | 36<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 37<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 38<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 39<!-- .element: class="fragment fade-out" data-fragment-index="5" --> | 40<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | | 41<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 42<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 43<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 44<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 45<!-- .element: class="fragment fade-out" data-fragment-index="5" --> | 46<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 47<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 48<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 49<!-- .element: class="fragment fade-out" data-fragment-index="9" --> | 50<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | | 51<!-- .element: class="fragment fade-out" data-fragment-index="5" --> | 52<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 53<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 54<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 55<!-- .element: class="fragment fade-out" data-fragment-index="7" --> | 56<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 57<!-- .element: class="fragment fade-out" data-fragment-index="5" --> | 58<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 59<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 60<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | | 61<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 62<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 63<!-- .element: class="fragment fade-out" data-fragment-index="5" --> | 64<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 65<!-- .element: class="fragment fade-out" data-fragment-index="7" --> | 66<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 67<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 68<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 69<!-- .element: class="fragment fade-out" data-fragment-index="5" --> | 70<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | | 71<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 72<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 73<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 74<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 75<!-- .element: class="fragment fade-out" data-fragment-index="5" --> | 76<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 77<!-- .element: class="fragment fade-out" data-fragment-index="9" --> | 78<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 79<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 80<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | | 81<!-- .element: class="fragment fade-out" data-fragment-index="5" --> | 82<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 83<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 84<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 85<!-- .element: class="fragment fade-out" data-fragment-index="7" --> | 86<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 87<!-- .element: class="fragment fade-out" data-fragment-index="5" --> | 88<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 89<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 90<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | | 91<!-- .element: class="fragment fade-out" data-fragment-index="9" --> | 92<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 93<!-- .element: class="fragment fade-out" data-fragment-index="5" --> | 94<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 95<!-- .element: class="fragment fade-out" data-fragment-index="7" --> | 96<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 97<!-- .element: class="fragment highlight-blue" data-fragment-index="10" --> | 98<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | 99<!-- .element: class="fragment fade-out" data-fragment-index="5" --> | 100<!-- .element: class="fragment fade-out" data-fragment-index="3" --> | ---- ### 時間複雜度 $\text{O}(n\cdot \log(\log n))$ <span>$n + \frac n2 + \frac n3 + \cdots + \frac nn \approx n\log n$</span><!-- .element: class="fragment" data-fragment-index="1" --> <span>$\frac n2 + \frac n3 + \frac n5 + \cdots + \frac np \approx n\log (\log n)$</span><!-- .element: class="fragment" data-fragment-index="2" --> ---- ### 實作 1. 使用迴圈從小到大列舉數字 2. 配合陣列去紀錄每個數是不是一個質數 Note: 給個 3min 劇透限制 ---- ### 實作 ```cpp= [|1|2|4|5-8|5|6|7|8] const int N = 20000000; bool notprime[N+5]; void eratosthenes_sieve() { notprime[0] = notprime[1] = true; for (int i = 2; i * i <= N; ++i) if (!notprime[i]) for (int j = i * 2; j <= N; j += i) notprime[j] = 1; } ``` Note: | Line | 說明 | | ---- | ----------------------------------------------------------------------------------------------------- | | 10 | 由於一開始會先假設所有數為質數後再一一標記為合數<br>所以通常會先將質數指定為 false 而省去初始化的時間 | | 14 | // sqrt(N) 以上的數字不會篩掉任何數字了 | ---- ### Tips 如果你不喜歡 ```i * i <= N```<br>也可以寫成 ```i <= sqrt(N)``` ---- ### 優化 - <span>$2$ 獨立處理,列舉質數的迴圈只跑奇數</span><!-- .element: class="fragment" data-fragment-index="1" --> - <span>多一個 $\text{if}$ 判斷是否為合數倍</span><!-- .element: class="fragment" data-fragment-index="2" --> - <span>欲刪掉質數 $i$ 的倍數時<br>$2 \sim (i-1)$ 倍一定被篩過了<br>只需要篩 $i$ 倍以上的數</span><!-- .element: class="fragment" data-fragment-index="3" --> Note: 合數倍 已被篩過 ---- ### Linear Sieve 線性篩法 埃氏篩法 把++質數的倍數++篩掉 線性篩法 把++每個數的質數倍++篩掉 ---- ### 想法 目標是讓每個合數都只被篩到 $1$ 次 我們把任一個合數寫成質數相乘的形式 $\qquad C = p_1p_2\dots p_n$ 想辦法讓 $C$ 只被 $p_2\dots p_n$ 篩到 ---- ### 實作 ```cpp= [|1|2|3|7-17|7|8-9|10|11-12|13|14-15] const int N = 20000000; bool notprime[N+5]; vector<int> prime; void linear_sieve() { for (int i = 2; i <= N; ++i) { if (!notprime[i]) prime.push_back(i); for (auto p1 : prime) { if (p1 * i > N) break; notprime[p1 * i] = true; if (i % p1 == 0) break; } } } ``` Note: | Line | 說明 | | 7 | 列舉 p2 * ... * pn | | 8-9 | 順便找質數 | | 10 | 列舉當前找到的質數 | | 11-12 | 後面列舉的質數仍會超過範圍,skip | | 13 | 標記合數 | | 14-15 | 從小到大地去列舉質數 $p_1$ <br>若 $i = p_2\dots p_n$ 被 $p_1$ 整除 <br>則 $p_1 = p_2$ <br>根據需求,不需要再去列舉更大的 $p_1$ 了 <br>所以此時就可以 `break` 了 | ---- ### 分析比較 * <span>**不用把篩出的質數儲存** 在 $2\times 10^8$ 範圍 優化過的 ++埃氏篩法++ 較快</span><!-- .element: class="fragment" data-fragment-index="1" --> * <span>**須把篩出的質數儲存** ++線性篩法++ 稍微快一點 (大概不到 10%) 因為不用額外優化 code 短一些</span><!-- .element: class="fragment" data-fragment-index="2" --> ---- ### 篩法 DP 在篩法過程中,把篩法表型別由 bool 改成 int **存當前數字被哪個質數篩掉。** <span>將原為 bool 陣列的 ```notprime``` 改為 int 陣列的 ```sieve```</span><!-- .element: class="fragment" data-fragment-index="1" --> ---- ### 子問題 篩法結束後,對於任意數字 $i$ 其 $\text{sieve}[i]$ 為 $i$ 的任一質因數 由於 $\text{sieve}[i]$ 必定**整除** $i$ **$dp_{i / \text{sieve}[i]}$** 會變成 $dp_i$ 的**同性質子問題**。 ---- ### Hints 我們讓質數 $p$ 的 $\text{sieve}[p] = p$ 而不是 $0$<br>可以方便 DP 處理 ---- ### Example **拿來求質因數個數(重複)** ```cpp= [|1|2] dp[1] = 0; dp[i] = dp[i / sieve[i]] + 1; ``` Note: 線性複雜度獲得所有數的質因數個數 ---- ### Example **拿來求質因數個數(重覆不算)** ```cpp= [|1|2-4|3|4|5] dp[1] = 0; int t = i; while (t % sieve[i] == 0) t /= sieve[i]; dp[i] = dp[t] + 1; ``` Note: 多了個超小的 $\log$ 讓 $i$ 把質因數 $\text{sieve}[i]$ 除乾淨 此時 $t$ 滿足 ```t % sieve[i] != 0``` ```dp[t]``` 是同性質小問題<br>而 $i$ 一定比 $t$ 多一個不重覆的質因數 $\text{sieve}[i]$ ---- ### Example **拿來求各質因數次數** ```cpp= [|1|2-3|2|3] memset(dp[1], 0, sizeof(dp[1])) memcpy(dp[i], dp[i / sieve[i]], sizeof(dp[0])); ++dp[i][idx[sieve[i]]]; ``` Note: ```dp[i][j] = k``` 記錄整數 $i$ 擁有第 $j$ 小的質數 $k$ 次方 則整數 $i$ 一定剛好比整數 $i / \text{sieve}[i]$ 多擁有 $1$ 次方的 $\text{sieve}[i]$ 其它一樣 ---- ### Example **也可以不 DP 直接求** 比如說質因數個數(重覆也算) ```cpp= int ans = 0; while (n > 1) ans++, n /= sieve[n]; ``` 不需要把每個數的個數算出來 ---- ### 練習題 - [Zerojudge a007 判斷質數](https://zerojudge.tw/ShowProblem?problemid=a007) - [Zerojudge f803 質數篩法練習](https://zerojudge.tw/ShowProblem?problemid=f803) - [Luogu P1865 A % B Problem](https://www.luogu.com.cn/problem/P1865) - [toj 183 哭力怕運算](https://toj.tfcis.org/oj/pro/183/) - [toj 442 簡單數學](https://toj.tfcis.org/oj/pro/442/) --- ## 同餘 ---- ### 定義 二個數 $a,\,b$ 滿足 $m\ |\ a − b$<br>那我們說這兩個數模 $m$ 同餘<br>記為 $a \equiv b \pmod m$ ---- ### 優點 整數的剩餘系具有許多優點 1. 它具有良好的代數性質 2. 在程式計算中<br>它將會是一個避免整數 $\text{overflow}$ 的工具 ---- ### Properties * 同加 $\begin{align*} &A\ \equiv\ B\\ \Rightarrow\ &A+C\ \equiv\ B+C\\ \end{align*}$ * 同減 $\begin{align*} &A\ \equiv\ B\\ \Rightarrow\ &A-C\ \equiv\ B-C\\ \end{align*}$ * 同乘 $\begin{align*} &A\ \equiv\ B\\ \Rightarrow\ &A×C\ \equiv\ B×C\\ \end{align*}$ ---- ### Warning 沒有除法 ---- ### 小結 以上的性質可以得到一個結論 在大部分的運算中<br>**計算完再取模**跟**先取模再計算**<br>得出來的答案是相同的! --- ## 歐拉函數 ---- ### Why we need this? 歐拉函數 Euler's Totient Function 數論中的重要函數 $\phi(n)$ 為 $0 \sim (n - 1)$ 中與 $n$ 互質的數 <span>e.g. $\phi(2) = 1,\, \phi(6) = 2,\, \phi(7) = 6$</span><!-- .element: class="fragment" data-fragment-index="1" --> ---- ### 定義 **完全剩餘系**定義為一大小為 $n$ 的集合<br>其每個元素$\bmod n$ 後會有相異 $n$ 個元素 <span>$0,1,\dots,n-1$ 為$\bmod n$ 的**非負最小完全剩餘系**</span><!-- .element: class="fragment" data-fragment-index="1" --> ---- ### 定義 **簡化剩餘系**<br>則是將完全剩餘系中與 $n$ 互質的數留下 <span>**非負最小簡化剩餘系**<br>即由 $0 \sim (n - 1)$中與 $n$ 互質的數組成</span><!-- .element: class="fragment" data-fragment-index="1" --> <span>定義歐拉函數 $\phi(n)$ 為 簡化剩餘系的元素數量</span><!-- .element: class="fragment" data-fragment-index="2" --> ---- ### Example 考慮$\bmod 6$ 的情況 <span>**完全剩餘系**<br>$\{1,2,3,4,5,6\} \text{ or } \{0,7,-4,3,40,-25 \}$</span><!-- .element: class="fragment" data-fragment-index="1" --> <span>**非負最小完全剩餘系**唯一為 $\{0,1,2,3,4,5\}$</span><!-- .element: class="fragment" data-fragment-index="2" --> <span>**非負最小簡化剩餘系**唯一為 $\{1,5\}$</span><!-- .element: class="fragment" data-fragment-index="3" --> <span>$\phi(6) = 2$</span><!-- .element: class="fragment" data-fragment-index="4" --> ---- ### 定理 $N = p_1^{e_1} \times p_2^{e_2} \times \dots \times p_k^{e_k}$<br>其中 $p_i$ 為 $N$ 的質因數 \begin{equation} \phi(N) = N \displaystyle\prod_{i}(1 - \frac{1}{p_i}) \end{equation} 證明略<!-- .element: class="fragment" data-fragment-index="1" --> Note: 與哪些質數有關,與冪次無關 ---- ### Example $6 = 2 \times 3$ \begin{align} \phi(6) &= 6 \cdot (1 - \frac12)(1 - \frac13)\\ &= 6 \cdot \frac12 \cdot \frac23 \\ &= 2 \end{align} <span>e.g. $1,\,5$</span><!-- .element: class="fragment" data-fragment-index="1" --> ---- ### Example $18 = 2 \cdot 3^2$ \begin{align} \phi(18) &= 18 \cdot (1 - \frac12)(1 - \frac13)\\ &= 18 \cdot \frac12 \cdot \frac23 \\ &= 6 \end{align} <span>e.g. $1, 5, 7, 11, 13, 17$</span><!-- .element: class="fragment" data-fragment-index="1" --> ---- ### 求法 歐拉函數具有以下性質 \begin{equation} n = \sum_{d | n} \phi(d) \end{equation} <span>$\phi(n) = n - \sum_{d | n,\ d \lt n} \phi(d)$</span><!-- .element: class="fragment" data-fragment-index="1" --> Note: $\gcd(k, n) = d \Rightarrow \gcd(\frac kd, \frac nd) = 1$ 令 $f(x)$ 為 $\gcd(k, n) = x$ 的個數 ---- ### 求法 比起列舉因數 (每個 $\sqrt{k}$) 不如直接列舉倍數 (共 $n \log n$) ---- ### 實作 ```cpp= [|2-3|4-6|4-5|6] void sieve(int N) { for (int i = 1; i <= N; ++i) phi[i] = i; // 一開始讓 phi_i = i for (int i = 1; i <= N; ++i) for (int j = 2 * i; j <= N; j += i) phi[j] -= phi[i]; } ``` ---- ### 篩法求法 - 埃式篩法 + 篩法 DP 利用 $\text{Formula }1$ 配合篩法 DP<br>枚舉出所有質因數 直接進行質因數分解 - 線性篩法 在每個數被篩到時<br>順便根據公式去計算它的歐拉函數 Note: 不細講 ---- ### 單個求法 - 單個數的 $\sqrt N$ 求法 沒有需要求出大範圍的歐拉函數的話<br>可以一個一個求 直接利用 $\text{Formula 1}$ + $\sqrt N$ 列舉質因數 <br>可得一 $\text{O}(\sqrt N)$ 的作法。 Note: 質因數分解 ---- ### 練習題 - [toj 427 誘惑之森](https://toj.tfcis.org/oj/pro/427/) --- ## 歐拉定理 ---- ### 定理內容 $m^{\phi(n)} \equiv 1 \pmod n$<br>$\text{ when } \gcd(m, n) = 1$ ---- ### 引理 $am \equiv bm \Leftrightarrow a\equiv b \pmod n \text{ when }\gcd(m, n) = 1$ \begin{align} & am \equiv bm \pmod n \\ \Rightarrow\, & n\, |\, (a-b)m \\ \Rightarrow\, & n\, |\, (a-b) \\ \Rightarrow\, & a\equiv b\pmod n \end{align}<!-- .element: class="fragment" data-fragment-index="1" --> ---- #### 費馬小定理 $a^{p-1} \equiv 1 \pmod p$ Note: $\phi(p) = p-1$ ---- ### 廣義歐拉定理 \begin{equation} a^b \equiv \begin{cases} a^{b \bmod \phi(m)} & \gcd(a, m) = 1\\ a^b & \gcd(a, m) \neq 1,\ b \lt \phi(m)\\ a^{b \bmod \phi(m) + \phi(m)} & \gcd(a, m) \neq 1,\ b \ge \phi(m) \end{cases} \quad \pmod m \end{equation} ---- ### Example $4^k \pmod {18}$ $1,\,4,\,16,\,10,\,4,\,16,\,10,\,4,\,16,\,10,\,4,\,16,\,\dots$ Note: $\phi(18) = 6$ ---- ### 小結 透過計算歐拉函數 配過廣義歐拉定理來**降冪** 求解 $a^b \bmod m$ 時可以減少需要計算的次方 ---- ### 練習題 - [TIOJ 1324 指數之謎](https://tioj.ck.tp.edu.tw/problems/1324) --- ## 擴展歐幾里得算法 ---- ### Why we need it? **擴展歐幾里得算法** ($\text{Extended Euclid's Algorithm}$) 用於求出形式如$\text{ ax + by = c }$的整數解 Note: 但在使用它之前,需要一些定理來輔助證明此算法的正確性 ---- ### 定理 1 假設 $m, n \in \mathbb Z,\ g = \gcd(m, n)$, 則 $\{ms + nt\, |\, s, t \in \mathbb Z\} = \{gx\ |\ x \in \mathbb Z\}$ Note: :::spoiler 證明 當 $m = n = 0$ 時,顯然成立 因此我們可以假設 $m \neq 0$ 或 $n \neq 0$ 假設 $I = \{ms + nt\ |\ s, t \in \mathbb Z\}$,$k$ 為 $I$ 中的最小正整數 欲證 $I = \{kx\ |\ x \in \mathbb Z\} \enspace \forall c \in I, c \neq 0$ 根據除法演算法,存在 $q, r \in \mathbb Z$ 使得 $c = qk + r, 0 \leq r \lt k \Rightarrow r = c - qk$ 因為 $c \in I$ 且 $k \in I$,所以 $r \in I$ 因為 $k$ 為 $I$ 中最小正整數且 $r \lt k$,所以 $r = 0$ $\Rightarrow c = kq \in \{kx | x \in \mathbb Z\}$,因此 $I = \{kx | x \in \mathbb Z\}$ 接著證明 $k = g$ 因為 $m, n \in I = \{kx | x \in \mathbb Z\}$,所以 $m, n$ 皆為 $k$ 的倍數,因此 $k$ 為 $m, n$ 的公因數 因為 $k \in I$,所以 $\exists s, t \in Z$ 使得 $k = ms + nt$ 因此,若 $d$ 為 $m, n$ 的公因數,則 $d$ 為 $k$ 因數 $\Rightarrow |d| \leq k$,所以 $k$ 為 $m, n$ 的最大公因數,即 $k = g$ ::: ---- ### 定理 2 (貝祖定理) 假設 $a, b, c \in \mathbb Z^+$,則 $\text{Diophantine}$ 方程式<br>$ax + by = c$ 有整數解 $x = x_0$,$y = y_0$<br>若且唯若 $\text{gcd}(a, b)\,|\,c$ Note: :::spoiler 證明 $(\Rightarrow):$ 因為 $ax + by = c$ 有整數解 $x = x_0$,$y = y_0$, 所以 $ax_0 + by_0 = c$ 因為 $\gcd(a, b)|a$ 且 $\gcd(a, b)|b$,所以 $\gcd(a, b)|c$ $(\Leftarrow):$ 因為 $\gcd(a, b)|c$,所以 $c = \gcd(a, b)d, \text{ for some } d \in \mathbb Z$ 因為 $\exists s, t \in \mathbb Z$ 使得 $\gcd(a, b) = as + bt$ 所以 $a(sd) + b(sd) = \gcd(a, b)d = c$ $\Rightarrow ax + by$ 有整數解 $x_0 = sd$,$y_0 = td$ ::: ---- ### 解法 $ax + by = \gcd(a,b)$ $bx' + (a \bmod b)y' = \gcd(b, a \bmod b)$<!-- .element: class="fragment" data-fragment-index="1" --> $bx' + (a \bmod b)y' = \gcd(a, b)$<!-- .element: class="fragment" data-fragment-index="2" --> ---- ### 解法 $bx' + (a \bmod b)y' = \gcd(a, b)$ $bx' + (a - b\left\lfloor\frac{a}{b}\right\rfloor)y' = \gcd(a, b)$<!-- .element: class="fragment" data-fragment-index="1" --> $ay' + b(x' - \left\lfloor\frac{a}{b}\right\rfloor y') = \gcd(a, b)$<!-- .element: class="fragment" data-fragment-index="2" --> ---- ### 解法 $ay' + b(x' - \left\lfloor\frac{a}{b}\right\rfloor y') = \gcd(a, b)$ \begin{cases} x = y' \\ y = x' - \lfloor \frac a b \rfloor y' \end{cases} Note: 因此只要算出 $(b,\ a \bmod b)$ 的解即可回推出 $(a,\ b)$ 的解 欲算出 $(b,\ a \bmod b) \triangleq (a',\ b')$ 的解又可以先求出 $(b',\ a' \bmod b')$ 的解 ---- ### 最小子問題 假設二數的最大公因數是 $g$ 則最小的子問題跟歐幾里得算法一樣是 $(g, 0)$ $gx + 0y = g$ $(x,\ y) = (1,\ 0)$ ---- <!-- .slide: data-transition="none" --> ### Example \begin{align} &16x + 10y = 2 &\quad &16 = 10 \times 1 + 6 \\ &10x + 6y = 2 &\quad &10 = 6 \times 1 + 4 \\ &6x + 4y = 2 &\quad &6 = 4 \times 1 + 2 \\ &4x + 2y = 2 &\quad &4 = 2 \times 2 + 0 \\ &2x + 0y = 2 &\quad &(x, y) = (1, 0) \\ \end{align} ---- <!-- .slide: data-transition="none" --> ### Example \begin{align} &16x + 10y = 2 &\quad &16 = 10 \times 1 + 6 \\ &10x + 6y = 2 &\quad &10 = 6 \times 1 + 4 \\ &6x + 4y = 2 &\quad &6 = 4 \times 1 + 2 \\ &4x + 2y = 2 &\quad &(x, y) = (0, 1) \\ &2x + 0y = 2 &\quad &(x, y) = (1, 0) \\ \end{align} ---- <!-- .slide: data-transition="none" --> ### Example \begin{align} &16x + 10y = 2 &\quad &16 = 10 \times 1 + 6 \\ &10x + 6y = 2 &\quad &10 = 6 \times 1 + 4 \\ &6x + 4y = 2 &\quad &(x, y) = (1, -1) \\ &4x + 2y = 2 &\quad &(x, y) = (0, 1) \\ &2x + 0y = 2 &\quad &(x, y) = (1, 0) \\ \end{align} ---- <!-- .slide: data-transition="none" --> ### Example \begin{align} &16x + 10y = 2 &\quad &16 = 10 \times 1 + 6 \\ &10x + 6y = 2 &\quad &(x, y) = (-1, 2) \\ &6x + 4y = 2 &\quad &(x, y) = (1, -1) \\ &4x + 2y = 2 &\quad &(x, y) = (0, 1) \\ &2x + 0y = 2 &\quad &(x, y) = (1, 0) \\ \end{align} ---- <!-- .slide: data-transition="none" --> ### Example \begin{align} &16x + 10y = 2 &\quad &(x, y) = (2, -3) \\ &10x + 6y = 2 &\quad &(x, y) = (-1, 2) \\ &6x + 4y = 2 &\quad &(x, y) = (1, -1) \\ &4x + 2y = 2 &\quad &(x, y) = (0, 1) \\ &2x + 0y = 2 &\quad &(x, y) = (1, 0) \\ \end{align} ---- ### 實作方式 ```cpp= int gcd(int a, int b) { if (b == 0) return a; else return gcd(b, a % b); } ``` Note: 預留 3min 劇透線 ---- ### 實作方式 ```cpp= [|1|2-6|7-13|8-9|10-11|12|3-4|5] int extgcd(int a, int b, int& x, int& y) { if (b == 0) { x = 1; y = 0; return a; } else { int x_, y_; int g = extgcd(b, a % b, x_, y_); x = y_; y = x_ - (a / b) * y_; return g; } } ``` Note: 計算子問題的解 最小子問題解 ---- ### 精簡實作版 ```cpp= [|3] void extgcd(int a, int b, int& x, int& y) { if (b) { extgcd(b, a%b, y, x); y -= (a / b) * x; } else x = 1, y = 0; } ``` ---- ### 複雜度 以歐幾里得算法 $(\gcd)$ 實作 $\text{O}(\log(\max(a,\ b)))$ ---- ### 解的情況 欲解 $ax+by=c$,<br>只需先求出 $ax+by=\gcd(a, b)$ 的解<br>再把解乘上 $\frac c{\gcd(a, b)}$ 即可 <span>$\gcd(a, b) \nmid c$ 時無解</span><!-- .element: class="fragment" data-fragment-index="1" --> ---- ### 通解 有解,則有無限多組解 $\{(x, y) + \frac k{\gcd(a,\, b)}(b,\, -a)\,|\, k \in \mathbb Z\}$ 為通解 Note: 可以把 $ax + by = c$ 想成 $(a, b) \cdot (x, y) = c$ 當求出一組 (x, y) 後,再加上跟 (a, b) 垂直的向量不會影響內積結果 也就是跟 (b,\, -a) 平行的向量 ---- ### 通解 \begin{align} & \{(x, y) + k(\frac b{\gcd(a,\, b)},\, \frac{-a}{\gcd(a,\, b)})\,|\, k \in \mathbb Z\} \\ =\, &\{(x, y) + k(\frac {\text{lcm}(a,\, b)}a,\, \frac{\text{lcm}(a,\, b)}{-b})\,|\, k \in \mathbb Z\} \\ \end{align} Note: $ab = \gcd(a, b)\text{lcm}(a, b)$ ---- ### 通解 有無限多組解 就有爆 long long 的風險 但上面介紹的實作法可以保證 $|x| \le b,\, |y| \le a$ ---- ### Example $16x + 10y = 2$ 有一組解 $(x, y) = (2, -3)$ <span>有通解 $\{(2, -3) + k(\frac {80}{16},\, \frac{80}{-10})\,|\, k \in \mathbb Z\}$</span><!-- .element: class="fragment" data-fragment-index="1" --> <span>也就是 $(2 + 5k, -3-8k)$</span><!-- .element: class="fragment" data-fragment-index="2" --> ---- ### 練習題 - [uva 10104 - Euclid Problem](https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1045) - [uva 12775 - Gift Dilemma](https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4628) --- ## 模逆元 ---- ### 學習動機 一般競賽題目中<br>通常會將答案 $\bmod$ 一數 若想在同餘系統下做出基本的四則運算 必須得學習如何在 $\bmod$ 一數時做除法 ---- ### 除法 **除法** 是乘法的反運算 除以 $a$ 等同於<br>乘上一個 $a$ 的**乘法反元素** ---- ### 模反元素 在一個模底下的乘法反元素<br>稱為**模反元素**(**模逆元**),記作 $a^{-1}$ $ab \equiv 1 \quad (\text{mod}\ m)$ $a^{-1} \equiv b \quad (\text{mod}\ m)$ Note: 如果找得到 模逆元 則可以做除法 ---- ### 存在性 求解 $ax \equiv 1 \pmod m$ 等價於求解 $ax + my = 1$<br>$x$ 即為 $\text{a}$ 的模逆元 <span>根據 $\text{extgcd}$ 裡的 [定理 $2$](#/8/3)<br>$\gcd(a, m) = 1$ 有整數解</span><!-- .element: class="fragment" data-fragment-index="1" --> Note: 解釋為何等價 由此可知,$a$ 在模 $m$ 底下存在模逆元,若且唯若 $\gcd(a, m) = 1$ 也就是二數必須互質 ---- ### Example $7 \cdot 43 \equiv 301 \equiv 1 \pmod{60}$ <span>稱 $43$ 是 $7$ 的模逆元</span><!-- .element: class="fragment" data-fragment-index="1" --> <span>記作 $7^{-1}$</span><!-- .element: class="fragment" data-fragment-index="2" --> $21 \cdot 7^{-1} \equiv 21 \cdot 43 \equiv 903 \equiv 3 \pmod {60}$<!-- .element: class="fragment" data-fragment-index="3" --> ---- ### 擴展歐幾里得算法 $ax \equiv 1 \enspace\pmod m$ $\exists\, y \in \mathbb Z,\, ax + my = 1$ ---- ### 歐拉定理 \begin{equation} a^{\phi(n)} \equiv 1\pmod n \\ \Rightarrow a^{\phi(n)-1} \equiv a^{-1} \pmod n \end{equation} <span>e.g. $7^{\phi(60) - 1} \equiv 7^{15} \equiv 43\pmod{60}$</span><!-- .element: class="fragment" data-fragment-index="1" --> ---- ### 線性表格 當模數是質數時<br>有一演算法可以做到線性建立模逆元表格 ---- ### 定理 $\text{inv}[i] = -\Big\lfloor\frac{m}{i}\Big\rfloor \,\text{inv}[m\bmod i] \bmod m$ <br>$\text{if } m \text{ is prime}$ ---- ### 實作 ```cpp= inv[1] = 1; for(int i = 2; i < m; ++i) inv[i] = (m - (m/i) * inv[m%i] % m) % m; ``` 上述演算法也可以改成 $O(N)$ 求 $1\sim N$, ---- ### 實作 直接遞迴 ```cpp= int inv(int i) { return (i == 1) ? 1 : (m - (m/i) * inv(m%i) % m) % m; } ``` ---- ### 練習題 - [Zerojudge a289](https://zerojudge.tw/ShowProblem?problemid=a289) --- ## 快速冪<br>Multiply-and-Square Algorithm ---- ### 前言 此算法用於快速計算 $a^b \bmod c$ 其核心精神在於不要浪費曾經算過的東西 ---- ### 想法 $b = \lfloor \frac{b}{2} \rfloor \times 2 + (b\bmod 2)$ $a^b = a^{\lfloor \frac{b}{2} \rfloor} \times a^{\lfloor \frac{b}{2} \rfloor} \times a^{(b\bmod 2)}$ <span>這使得我們可以用**遞迴**的方式實作快速冪</span><!-- .element: class="fragment" data-fragment-index="1" --> ---- ### 遞迴實作 ```cpp= [|2|4|5|7-8|7|8] int qp(int a, int b, int c) { if (b == 0) return 1; int x = qp(a, b >> 1, c); int y = x * x % c; if (b & 1) return y * a % c; else return y; } ``` Note: | Line | 說明 | | ---- | ---------------------------------------------------------------------------------------------------------------------------------------- | | 1-9 | 將 $a^b$ 分成 $\left(a^{\left(\frac{b}{2}\right)}\right)^2$,遞迴計算並合併。 | | 4 | 遞迴算出 $x = a^{\left\lfloor \frac{b}{2} \right\rfloor}$ | | 5 | 合併 $y = x^2 = a^{2\left\lfloor \frac{b}{2} \right\rfloor}$ | | 6-7 | 若 $b$ 是偶數則 $b = {2\left\lfloor \frac{b}{2} \right\rfloor}$<br>否則 $b = {2\left\lfloor \frac{b}{2} \right\rfloor} + 1$,需要補乘 $1$ 個 $a$ | ---- ### 複雜度 $\text{O}(\log b)$ Note: $b$ 不斷折半 ---- ### 瘋狂平方法 想像一下,我們可以如何快速地增加 $a$ 的次方 $a,\,a^2,\,a^4,\,a^8,\,a^{16},\,\cdots$ ---- ### 組裝 $a,\,a^2,\,a^4,\,a^8,\,a^{16},\,\cdots$ How to compute $a^b$ efficiently? $a^{21} = a^{16\,+\,4\,+\,1} = a^{16} \cdot a^4 \cdot a^1$<!-- .element: class="fragment" data-fragment-index="1" --> ---- ### 二進位 我們常用的是十進位 $21 = 16\,+\,4\,+\,1$ 程式中常用的是二進位 $21_{(10)} = 10101_{(2)}$ Note: 1, 10, 100, 1000, ... 1, 2, 4, 8, ... 只要會實作二進位,就能好好實作快速冪 ---- ### 觀察 $21_{(10)} = 10101_{(2)}$ $18_{(10)} = 10010_{(2)}$ $21$ 是奇數 二進位最低位是 $1$ $18$ 是偶數 二進位最低位是 $0$ Note: 其實很合理,二進位其他位代表的都是偶數 ---- ### 觀察 $21_{(10)} = 10101_{(2)}$ $10_{(10)} = 01010_{(2)}$ $\big\lfloor\frac{21}2\big\rfloor = 10$ 相當於每一位往最低位移一位 Note: 8, 4, 2, 1 -> 4, 2, 1, 0 ---- ### 想法 想像你有一個數字 $b$ <span>用奇偶性來看最後一位</span><!-- .element: class="fragment" data-fragment-index="1" --> <span>再用 ```b / 2``` 來往最低位吃掉一位</span><!-- .element: class="fragment" data-fragment-index="2" --> ---- <!-- .slide: data-transition="none" --> ### Example \begin{align} 13_{(10)} &= 1101_{(2)} \\ 6_{(10)} &= 0110_{(2)} \\ 3_{(10)} &= 0011_{(2)} \\ 1_{(10)} &= 0001_{(2)} \\ 0_{(10)} &= 0000_{(2)} \end{align} ---- <!-- .slide: data-transition="none" --> ### Example \begin{align} 13_{(10)} &\to 1 \\ 6_{(10)} &\to 0 \\ 3_{(10)} &\to 1 \\ 1_{(10)} &\to 1 \\ 0_{(10)} &\to \text{finish} \end{align} ---- <!-- .slide: data-transition="none" --> ### Example \begin{align} a \to\ &13& &6& &3& &1& \\ a\, \&\, 1 \to\ &1& &0& &1& &1& \\ 2^k \to\ &1& &2& &4& &8& \\ 13 = \ &1& +\ &0& +\ &4& +\ &8& \end{align} ---- ### 實作 ```cpp= [|2|3|4] void binary(int b) { while (b != 0) { cout << (b & 1); b >>= 1; } } ``` ---- ### 實作 ```cpp= [|1|2|3-8|3|4-5|5|7|6|9] int qp(int a, int b, int c) { int ans = 1; while (b != 0) { if (b & 1) ans = ans * a % c; a = a * a % c; b >>= 1; } return ans; } ``` Note: | Line | 說明 | | ------- | --------------------------- | | 3 | 先mod沒差,避免後續運算溢位 | | 4、5、7 | 觀察 $b$ 的二進位 | | 6 | 列舉 $a^1\ a^2\ a^4\ ...$ | ---- ### 複雜度 $\text{O}(\log b)$ Note: $b$ 的二進位只有約 $\log b$ 位 ---- ### 練習題 - [TIOJ 2095 快速冪(駭客題)](https://tioj.ck.tp.edu.tw/problems/2095) - [toj 36 simple problem](https://toj.tfcis.org/oj/pro/36/) --- ## 質數測試 ---- ### 需求 篩法可區分出一段範圍內的質數 但只能做到 $[1,\, 5 \times 10^7]$ 的範圍 那麼檢驗一數是不是質數能做到多快呢? ---- ### $\sqrt N$ test 直接檢查它有沒有除了 $1$ 和自身以外的因數 ---- ### 複習 費馬小定理 $a^{p-1} \equiv 1 \pmod p,\ p \text{ is a prime}$ <span>e.g. $4^{16} \equiv 1 \pmod {17}$</span><!-- .element: class="fragment" data-fragment-index="1" --> ---- ### 引理 1 $a^2 \equiv 1 \enspace\Leftrightarrow\enspace a \equiv \pm 1 \pmod p,\ p \text{ is a prime}$ \begin{align} \Rightarrow&\, p \mid (a^2 - 1) \\ \Rightarrow&\, p \mid (a - 1) \text{ or } p \mid (a + 1) \\ \Rightarrow&\, a \equiv \pm 1 \pmod p \end{align} ---- ### Miller Rabin 隨便挑一個 $a$<br>看看它是否通過了這兩個性質的考驗 * 如果沒通過,那麼它就是合數。 * 如果通過了,代表它有 $75\%$ 的可能性是質數。 ---- ### 方法 $a^{p-1},\, a^{\frac{p-1}{2}},\, a^{\frac{p-1}{4}},\, \dots, a^d \pmod p$ <span>根據費馬小定理<br>第一項是 $1$</span><!-- .element: class="fragment" data-fragment-index="1" --> <span>根據引理 $1$<br>不斷開平方根<br>只能開出 $1$ or $-1$</span><!-- .element: class="fragment" data-fragment-index="2" --> ---- ### 可能的結果 $1,\, 1,\, \dots,\, 1,\, -1,\, ?,\,\dots$ or $1,\, 1,\, \dots,\, 1,\, 1$ Note: $d \text{ is odd}$ 1. 此數列中至少開出一平方根為 $-1$ 2. 或者整個數列全是 $1$,或者說 $a^d = 1$。 ---- ### Example $a = 4,\, p = 13$ $4^{13 - 1},\, 4^6,\, 4^3\, \equiv\, 1,\, 1,\, -1 \pmod {13}$ Note: 質數一定對 對了不一定是質數 ---- ### Example $a = 4,\, p = 21$ $4^{21 - 1},\, 4^{10},\, 4^5\, \equiv\, 16,\, 4,\, 16 \pmod {21}$ Note: 質數一定對 對了不一定是質數 ---- ### Note $p$ 是質數 $\Rightarrow$ 性質會成立 性質不成立 $\Rightarrow$ $p$ 是合數 性質成立 $\not\Rightarrow$ $p$ 是質數 ---- ### 反例 $a = 174,\, p = 221$ $174^{221 - 1},\, 174^{110},\, 174^{55}\, \equiv\, 1,\, -1,\, 47 \pmod {221}$ <span>但 $221 = 13 \cdot 17$</span><!-- .element: class="fragment" data-fragment-index="1" --> Note: 質數一定對 對了不一定是質數 ---- ### 做法 * <span>反著構造此數列<br>如果 $a^d=1\text{ or } -1$ <br>則未來必定通過**費馬測試**</span><!-- .element: class="fragment" data-fragment-index="1" --> * <span>若不等於,則後續出現 $-1$ 也可以通過測試<br>但出現 $1$ 會使**方根測試**失敗</span><!-- .element: class="fragment" data-fragment-index="2" --> ---- ### 實作 ```cpp= [|1|2-3|5-7|5|7|9-11|13-17|13|14|15|16|18] bool miller_rabin(int n, int a) { if ((n & 1) == 0) return n == 2; int u = n - 1, t = 0; while ((u & 1) == 0) u >>= 1, ++t; int x = qp(a, u, n); if (x == 1 || x == n - 1) return true; for (int i = 0; i < t - 1; ++i) { x = mul(x, x, n); if (x == 1) return false; if (x == n - 1) return true; } return false; } ``` Note: 5-7 分解次方 9-11 檢查 a^u 13 算冪次剩下的部分,最後一次不用算 15 方根測試失敗 16 偷窺未來 18 最後還沒成功就是失敗 ---- ### 複雜度 單個 $a$ 測試是 $\text{O}(\log n)$ ---- ### 小結 * <span>這演算法不保證正確性<br>但隨機用多個 $a$ 測試的話<br>其正確性是頗高的</span><!-- .element: class="fragment" data-fragment-index="1" --> * <span>取 $a = 2, 7, 61$<br>可以準確判定 int 範圍內的數</span><!-- .element: class="fragment" data-fragment-index="2" --> * <span>取 $a$ 小於 $40$ 的所有質數<br>可以準確判定 long long 範圍內的數</span><!-- .element: class="fragment" data-fragment-index="3" --> ---- ### 練習題 - [Zerojudge a007 判斷質數](https://zerojudge.tw/ShowProblem?problemid=a007) --- ## 中國剩餘定理 ---- ### 用途 求解一元一次同餘聯立方程式 \begin{equation} \begin{cases} x \equiv a_1 & \pmod {p_1}\\ x \equiv a_2 & \pmod {p_2}\\ ...\\ x \equiv a_n & \pmod {p_n}\\ \end{cases} \end{equation} \begin{equation} \forall i, j \enspace \text{gcd}(p_i, p_j) = 1 \end{equation} ---- ### 定理 \begin{equation} x \equiv \displaystyle\sum^n_{k=1}a_k\, M_k\, m_k \pmod N \end{equation} $N = \displaystyle\prod_{i=1}^n p_i\, ,\ M_k = \frac{N}{p_k}\, ,\ M_k\, m_k \equiv 1\, \pmod {p_k}$ Note: 簡單來說,我們有一個未知數 $x$ 跟數條同餘式子 欲合併成單條 $x$ 的同餘式 - 證明 > 此答案為構造解,可自行代入每一條式子進行驗證 ---- ### Example \begin{equation} \begin{cases} x \equiv 1 & \pmod {3}\\ x \equiv 4 & \pmod {5}\\ x \equiv 3 & \pmod {7}\\ \end{cases} \end{equation} \begin{align} x &\equiv 1 \cdot 35 \cdot 2 + 4 \cdot 21 \cdot 1 + 3 \cdot 15 \cdot 1 \\ &\equiv 94 \pmod{105} \end{align} ---- ### 求解 程式實作時可以慢慢將式子兩兩合併 \begin{equation} \begin{cases} x \equiv a_1 & \pmod {p_1} \\ x \equiv a_2 & \pmod {p_2} \\ \end{cases} \end{equation} $p_1x + p_2y = 1$ $x \equiv a_1 \cdot p_2y + a_2 \cdot p_1x \pmod{p_1 \cdot p_2}$ ---- ### 實作 ```cpp= [|1-3|5|7|8|9] struct modEq { int a, p; // x \equiv a \pmod p }; modEq merge(modEq e1, modEq e2) { int a, p, x, y; extgcd(e1.p, e2.p, x, y); p = e1.p * e2.p; a = e1.a * e2.p * y + e2.a * e1.p * x; return (modEq){a, p}; } ``` ---- ### 擴展 如果模的數兩兩之間沒有互質呢? ---- ### Example \begin{equation} x \equiv 5 \quad \pmod 6 \Leftrightarrow \begin{cases} x \equiv 1 \quad \pmod 2 \\ x \equiv 2 \quad \pmod 3 \end{cases} \end{equation} ---- ### Example \begin{equation} x \equiv 10 \quad \pmod {50} \Leftrightarrow \begin{cases} x \equiv 0 \quad \pmod 2 \\ x \equiv 10 \quad \pmod{5^2} \end{cases} \end{equation} ---- ### Example \begin{equation} x \equiv 123 \quad \pmod {360} \Leftrightarrow \begin{cases} x \equiv 3 \quad \pmod {2^3} \\ x \equiv 6 \quad \pmod {3^2} \\ x \equiv 3 \quad \pmod 5 \end{cases} \end{equation} ---- ### 小結 技巧性地先拆開再合併 迴避掉 $\gcd(b_i, b_j) \neq 1$的問題 合併時順便檢查是否有不合理之處 \begin{cases} x \equiv 3 \quad \pmod 5 \\ x \equiv 10 \quad \pmod {5^2} \end{cases} ---- ### 擴展歐幾里得算法 \begin{cases} x \equiv r_1 \quad \pmod {m_1} \\ x \equiv r_2 \quad \pmod {m_2} \end{cases} $x = m_1p + r_1 = m_2q + r_2$ <span>移項得 $m_1p+m_2(-q) = r_2 - r_1$</span><!-- .element: class="fragment" data-fragment-index="1" --> <span>利用擴展歐基里德算法可在 $\text{O}(\ \log(\max\{m_1, m_2\} \ )$ 找出一組 $(p, q)$</span><!-- .element: class="fragment" data-fragment-index="2" --> ---- ### 擴展歐幾里得算法 $l = \text{lcm}(m_1, m_2)$ [解的通式](#/8/14) 為 <br>$(p', q') = (p + \frac l {m_1}k, q - \frac l {m_2}k)$ $x = m_1p' + r_1 = m_1p + lk+r_1$<!-- .element: class="fragment" data-fragment-index="1" --> $\Rightarrow x \equiv m_1p + r_1 \pmod l$<!-- .element: class="fragment" data-fragment-index="2" --> ---- ### 無解 若方程無解,則代表出現矛盾的狀況 ---- ### Example \begin{cases} x \equiv 5 \quad \pmod {6} \\ x \equiv 8 \quad \pmod {9} \end{cases} $6p + 9(-q) = 8 - 5 = 3$ $(p, q) = (-1, -1)$<!-- .element: class="fragment" data-fragment-index="1" --> $x \equiv 6p + 5 \equiv 17 \pmod{18}$<!-- .element: class="fragment" data-fragment-index="2" --> ---- ### Example \begin{cases} x \equiv 5 \quad \pmod {6} \\ x \equiv 6 \quad \pmod {9} \end{cases} $6p + 9(-q) = 6 - 5 = 1$ $(p, q)$ 無解<!-- .element: class="fragment" data-fragment-index="1" --> ---- ### 練習題 - [Luogu P1516 青蛙的約會](https://www.luogu.com.cn/problem/P1516) - [toj 210 寧寧數貓咪](https://toj.tfcis.org/oj/pro/210/)

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully