--- tags: 數學 --- # 三角函數 - Fundamental Trigonometric Identities - Power Reducing Formulas ## Fucdamental Trigonometric Identities ### Reciprocal identities (倒數) $sec\theta=\frac{1}{cos\theta}$ $csc\theta=\frac{1}{sin\theta}$ $cot\theta=\frac{1}{tan\theta}$ $cos\theta=\frac{1}{sec\theta}$ $sin\theta=\frac{1}{csc\theta}$ $tan\theta=\frac{1}{cot\theta}$ ### Quotient identities (商) $tan\theta=\frac{sin\theta}{cos\theta}$ $cot\theta=\frac{cos\theta}{sin\theta}$ ### Pythagorean identities (平方關係) $sin^2\theta+cos^2\theta=1$ $1+tan^2\theta=sec^2\theta$ $1+cot^2\theta=csc^2\theta$ ### Cofunction identities (餘數) $sin(\frac{\pi}{2}-\theta)=cos\theta$ $cos(\frac{\pi}{2}-\theta)=sin\theta$ $tan(\frac{\pi}{2}-\theta)=cot\theta$ $cot(\frac{\pi}{2}-\theta)=tan\theta$ $sec(\frac{\pi}{2}-\theta)=csc\theta$ $csc(\frac{\pi}{2}-\theta)=sec\theta$ ### Odd/Even function identities (奇/偶函數) $sin(-\theta)=-sin\theta$ $cos(-\theta)=cos\theta$ $tan(-\theta)=-tan\theta$ $csc(-\theta)=-csc\theta$ $sec(-\theta)=sec\theta$ $cot(-\theta)=-cot\theta$ ## Power Reducing Formulas $sin^2x=\frac{1-cos2x}{2}$ $cos^2x=\frac{1+cos2x}{2}$ $tan^2x=\frac{1-cos2x}{1+cos2x}$ ## Double-angle formulas $sin2x = 2sinxcosx$ $cos2x = cos^2x-sin^2x = 1-2sin^2x = 2cos^2x -1$ $tan2x = \frac{2tanx}{1-tan^2x}$ ### Arc $s=r\theta$ where s denotes arc, r denotes radius, $\theta$ denotes central angle of radian ## Trigonometric sum and difference $sin(A+B) = sinAcosB + cosAsinB$ $sin(A-B) = sinAcosB - cosAsinB$ $cos(A+B) = cosAcosB - sinAsinB$ $cos(A-B) = cosAcosB + sinAsinB$ $tan(A+B) = \frac{tanA + tanB}{ 1 - tanAtanB}$ $tan(A-B) = \frac{tanA - tanB}{ 1 + tanAtanB}$