三角函數

  • Fundamental Trigonometric Identities
  • Power Reducing Formulas

Fucdamental Trigonometric Identities

Reciprocal identities (倒數)

secθ=1cosθ
cscθ=1sinθ

cotθ=1tanθ

cosθ=1secθ
sinθ=1cscθ

tanθ=1cotθ

Quotient identities (商)

tanθ=sinθcosθ
cotθ=cosθsinθ

Pythagorean identities (平方關係)

sin2θ+cos2θ=1
1+tan2θ=sec2θ

1+cot2θ=csc2θ

Cofunction identities (餘數)

sin(π2θ)=cosθ
cos(π2θ)=sinθ

tan(π2θ)=cotθ
cot(π2θ)=tanθ

sec(π2θ)=cscθ
csc(π2θ)=secθ

Odd/Even function identities (奇/偶函數)

sin(θ)=sinθ
cos(θ)=cosθ

tan(θ)=tanθ

csc(θ)=cscθ
sec(θ)=secθ

cot(θ)=cotθ

Power Reducing Formulas

sin2x=1cos2x2
cos2x=1+cos2x2

tan2x=1cos2x1+cos2x

Double-angle formulas

sin2x=2sinxcosx
cos2x=cos2xsin2x=12sin2x=2cos2x1

tan2x=2tanx1tan2x

Arc

s=rθ

where s denotes arc, r denotes radius,

θ denotes central angle of radian

Trigonometric sum and difference

sin(A+B)=sinAcosB+cosAsinB
sin(AB)=sinAcosBcosAsinB

cos(A+B)=cosAcosBsinAsinB
cos(AB)=cosAcosB+sinAsinB

tan(A+B)=tanA+tanB1tanAtanB
tan(AB)=tanAtanB1+tanAtanB