f(x)=Cxn⋅px⋅(1−p)n−x
M(t)=E(ext)=Σx=0next⋅Cxn⋅px⋅(1−p)n−x =((1−p)+pet)n
f(x)=Cr−1x−1⋅pr⋅(1−p)x−r
M(t)=E(ext)=Σx=r∞ext⋅Cr−1x−1⋅pr⋅(1−p)x−r
=(p1−p)r⋅Σx=r∞⋅Cr−1x−1⋅(et(1−p))x
令在上述中令y=x−r,x=y+r⟹∵在上述Σ中x=r
⟹=(p1−p)r⋅Σy=0∞⋅Cr−1y+r−1⋅(et(1−p))(y+r)
泰勒展開式by泰勒展開式:(1−x)−r=Σ0∞Ck−1r+k−1xk
⟹=(pet)r⋅(1−et(1−p))−r=(pet1−et(1−p))r
f(x)=λxe−λx!
M(t)=E(ext)=Σx=0∞ext(λxe−λx!)=e−λ⋅Σx=0∞((λet)xx!)
∵ex=1+Σx=1∞(x)nn!
⟹=e−λ⋅eλet=eλ(et−1)
f(x)=1θe(−x/θ)
M(t)=E(ext)=∫0∞ext(1θ)e(−x/θ)dx=∫0∞1θe(−x(1−θt)/θ)dx
=[−e−x(1−θt)/θ1−θt]0∞=11−θt
f(x)=x(α−1)e−x/θ(α−1)!θα
M(t)=E(ext)=∫0∞ext⋅x(α−1)e−x/θ(α−1)!θαdx
=1(α−1)!θα∫0∞x(α−1)ex(t−(1/θ))dx=1(1−θt)α
f(x)=1σ2πe−(x−μ)2/(2σ2)
M(t)=E(ext)=∫0∞ext⋅1σ2πe−(x−μ)2/(2σ2)
=e(μt+σ2t2/2)
probability
or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up