Try   HackMD

各種 Distribution 的證明

Binomial:

f(x)=Cxnpx(1p)nx

M(t)=E(ext)=Σx=0nextCxnpx(1p)nx
=((1p)+pet)n

Negative Binomial

f(x)=Cr1x1pr(1p)xr

M(t)=E(ext)=Σx=rextCr1x1pr(1p)xr

=(p1p)rΣx=rCr1x1(et(1p))x

y=xr,x=y+r⟹∵Σx=r

⟹=(p1p)rΣy=0Cr1y+r1(et(1p))(y+r)

by:(1x)r=Σ0Ck1r+k1xk

⟹=(pet)r(1et(1p))r=(pet1et(1p))r

Poisson

f(x)=λxeλx!

M(t)=E(ext)=Σx=0ext(λxeλx!)=eλΣx=0((λet)xx!)

ex=1+Σx=1(x)nn!

⟹=eλeλet=eλ(et1)


Exponential

f(x)=1θe(x/θ)

M(t)=E(ext)=0ext(1θ)e(x/θ)dx=01θe(x(1θt)/θ)dx

=[ex(1θt)/θ1θt]0=11θt

Gamma

f(x)=x(α1)ex/θ(α1)!θα

M(t)=E(ext)=0extx(α1)ex/θ(α1)!θαdx

=1(α1)!θα0x(α1)ex(t(1/θ))dx=1(1θt)α

Normal

f(x)=1σ2πe(xμ)2/(2σ2)

M(t)=E(ext)=0ext1σ2πe(xμ)2/(2σ2)

=e(μt+σ2t2/2)

tags: probability