arim7678
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    1
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 志田君研究テーマ検討 ## あらまし ## 文献 MCS(maximal common subsequence)を計算するFPTアルゴリズムの論文. * $k$本の文字列のMCSのFPT * $T \in MCS(S_1, \dots, S_k)$ * Bulteau, Laurent, et al. “An FPT-Algorithm for Longest Common Subsequence Parameterized by the Maximum Number of Deletions.” 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022. * 2本の文字列のMCS(の列挙) * $T \in MCS(S_1, S_2)$ * Alessio Conte, Roberto Grossi, Giulia Punzi, and Takeaki Uno, “Polynomial-delay enumeration of maximal common subsequences.” International Symposium on String Processing and Information Retrieval (SPIRE2019), 2019. ## 準備:MCSの定義 MCS問題の元の定義を与える.$\Sigma$を文字のアルファベットとする. $\Sigma$上の**部分系列関係**を$\preceq$で表す.ここに,$S \preceq T$ならば,$S$は$T$の**部分系列**であるという.もし $S \preceq T$ かつ $T \not\preceq S$ ならば,$S \prec T$と書き,$S$は$T$の**真部分系列**であるという. 補題: 任意の文字列 $S, T, U$ に対して,次の性質が成立する: * (i) Reflexivity: $S \preceq S$ * (ii) Transitivity: $(S \preceq T)\land (T \preceq U) \implies (S \preceq U)$ * (iii) Anti-symmetricity: $(S \preceq T)\land (T \preceq S) \implies (S = U)$ 補題: 部分系列関係 $\preceq$ は,$\Sigma^*$上の半順序関係である. 証明: 上の(i)--(iii)から直ちに成立する. 任意の文字列を$S_1, S_2 \in \Sigma^*$とおく.文字列 $T \in \Sigma^*$ が,$\{S_1, S_2\}$の**共通部分系列**(common subsequence)であるとは,$T \preceq S_i, \forall i=1,2$ が成立することを言う. 定義1(MCS問題の元の定義): 任意の文字列 $S_1, S_2 \in \Sigma^*$ に対して,パターンの集合 $MCS(S_1, S_2)\subseteq \mathcal S$ を次のように定義する:任意の$T \in \Sigma^*$に対して, $T \in MCS(S_1, S_2) \iff$ 次の(1)と(2)が成立する: * (1) $T$は$\{S_1, S_2\}$の共通部分系列である. * (2) $T \prec T'$を満たすような $\{S_1, S_2\}$の共通部分系列 $T'\in \Sigma^*$は存在しない. $MCS(S_1, S_2)$の任意の要素$T$を,$\{S_1, S_2\}$の**極大共通部分系列**(longest common subsequences)と呼ぶ. ## MCS問題のパターン族への一般化 ### パターン族 極大共通パターン問題(MCS)を,任意のパターン族$(\mathcal P, \sqsubseteq)$に対して拡張する. 定義3:パターン族とは,三つ組$\Gamma = (\Delta, \mathcal P, \sqsubseteq)$である.ここに, * $\Delta$は,$\Sigma \subseteq \Delta$を満たす記号のアルファベットである. * $\mathcal P \subseteq \Delta^*$は,$\Delta$上の表現の族である.$\Sigma^* \subseteq \mathcal P$ を満たすものと仮定する.$\mathcal P$の要素 $P \in \mathcal P$ を**パターン**(pattern)と呼ぶ. * $(\sqsubseteq) \subseteq \mathcal {P}^2$ は,$\mathcal P$上の半順序関係であり,**部分パターン関係**(subpattern relation)と呼ばれる. ### 例: 部分系列パターンの族 先の部分系列の定義に基づいて,次のように定める.**部分系列パターンの族**は,三つ組$Seq = (\Sigma, \mathcal S, \preceq)$で与えられる.ここに, * $\Sigma$ はアルファベットである. * $\mathcal S := \Sigma^*$ は,長さ0以上の文字列の全体であり,その要素 $S \in \mathcal S$ は**部分系列パターン**(subsequence pattern)と呼ばれる. * $(\preceq)\subseteq \mathcal S^2$ は,$\Sigma^*$上の部分系列関係である. ### 極大共通パターン問題 定義3(): 任意のパターン族を $\Gamma = (\Delta, \mathcal P, \sqsubseteq)$ とする.任意の文字列 $S_1, S_2 \in \Sigma^*$ に対して,パターンの集合 $MCP_\Gamma(S_1, S_2)\subseteq \mathcal S$ を次のように定義する:任意の $T \in \mathcal P$に対して, $T \in MCP_\Gamma(S_1, S_2) \iff$ 次の(1)と(2)が成立する: * (1) $T \sqsubseteq S_i, \forall i=1,2$ が成立する. * (2) 条件 (2.i) $T \sqsubset T'$と,条件 (2.ii) $T' \sqsubseteq S_i, \forall i=1,2$ を共に満たすようなパターン $T'\in \mathcal P$は存在しない. MCS問題は,パターン族$Seq = (\Sigma, \mathcal S, \preceq)$に対する極大共通パターン問題($MCP_{Seq}$)と,考えられる. **補題**: 任意の文字列$S_1, S_2$に対して,$MCS(S_1, S_2) = MCP_{Seq}(S_1, S_2)$ が成立する. ### 別の例:VLDCパターンの族(作業中) - VLDC, Variable-length don't-cares - subsequenceの拡張 - $P = w_0 \Sigma^* w_1 \dots w_{m-1} \Sigma^* w_m\; (m\ge 0)$の形の正規表現 - 例:${\tt P_1 = AB .* BB .* BCA}$ - 例:${\tt P_1 = ABBBA = A.*B .* B .* B.* A}$ - 記法: ## 研究のアイディア 上のMCSの定義で,$\mathcal S$をVLSCパターンの族とする.同時に部分系列関係を,次のように定義されるVLDCパターンの包摂関係(subsumption relation)$\preceq$に拡張する. 定義:VLDCパターン上の二項関係$\preceq$を次のように定義する.任意のVLDCパターン$P, Q \in \mathcal S$ に対して,$P \preceq Q$であるとは,$P$のワイルドカードに任意の長さ0以上の文字列を代入すると$Q$が得られることをいう.もし$P \preceq Q$が成立する時,**$P$は$Q$を含む**といい,**$Q$は$P$に含まれる**という. とすると,別のMCS問題が定義できる. 注意:包摂関係(subsumption relation)は,次の名前でも呼ばれる. * 汎化関係(generalization/specialization relation), * 部分パターン関係(subpattern relation) MCSの定義で,**common subsequence**のところを,**common VLDC** で置き換える. ## 参考文献 * Hiroki Arimura, Takeaki Uno: Mining Maximal Flexible Patterns in a Sequence. JSAI 2007: 307-317 * Sec.2 Preliminariesと本文:論文のマイニング対象が,極大VLDCパターン * Yusaku Kaneta, Shingo Yoshizawa, Shin-ichi Minato, Hiroki Arimura, Yoshikazu Miyanaga: A Dynamically Reconfigurable FPGA-Based Pattern Matching Hardware for Subclasses of Regular Expressions. IEICE Trans. Inf. Syst. 95-D(7): 1847-1857 (2012) * 論文のSec 2. Preliminariesに,VLDCパターンを含む拡張文字列パターンの定義あり * NavaNavarro & Raffinot,Flexible Pattern Matching in Strings(黄色本) * 一直線の正規表現のマッチングに詳しい.Bitap/Bit parallelも一番詳しい文字列照合の教科書. * Flexible Pattern Matching in Strings: Practical On-Line Search Algorithms for Texts and Biological Sequences (English Edition) * 正規表現の選言にbitapを拡張したもの. * Yusaku Kaneta, Shin-ichi Minato, Hiroki Arimura: Fast Bit-Parallel Matching for Network and Regular Expressions. SPIRE 2010: 372-384 ## EOF

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully