thribhuvan rapolu
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    --- title: '4D-Humans Code' disqus: hackmd --- 4D-Humans(Code) === ## Step By Step [TOC] ## Outline of demo.py 1. We load models: * HMR 2.0 (including checkpoints) * Detectron2 2. Setup Renderer 3. Pass the image into detectron2 to get segmented images that contains humans 4. Pass the segmented images into HMR 2.0 as batches 5. Using the predicted pose and camera render the mesh and add it to image Detectron-2 --- * This helps us to get segmented images containing one human * We pass the original image into detector(Detectron 2) ```python= det_out = detector(img_cv2) ``` * ***det_out*** will return object which contain : 1. **num_instances** : Number of instances 2. **image height** : Height of image 3. **image width** : Width of image 4. **fields** 1. **pred_boxes** : Coordinates of bounding box which contain human 2. **scores** : prediction score whether that box contain human or not 3. **pred_classes** : 0 if its human in image 4. **pred_masks** : predicted segmentation mask. * We create variable ***boxes*** that contains pred_boxes data for every particular box that contains human using ***valid_idx*** which contains indexes where pred_classes is 0 and score >0.5. ```python= det_instances = det_out['instances'] valid_idx = (det_instances.pred_classes==0) & (det_instances.scores > 0.5) boxes=det_instances.pred_boxes.tensor[valid_idx].cpu().numpy() ``` * Visualizing detectron-2 results:- All detected object boxes:- ![image](https://hackmd.io/_uploads/H1mXznIW0.png) Boxes containing humans and boxes corner coordinates:- ![image](https://hackmd.io/_uploads/HJkY-3I-A.png) <img src="https://hackmd.io/_uploads/rJ4dUp8ZC.png" alt="image" width="300" height="auto"> HMR 2.0 --- ### Preprocessing data for HMR2.0 * We pass the predicted bounding ***boxes*** containing humans from detectron to ***VitDetDataset*** ```python= dataset = ViTDetDataset(model_cfg, img_cv2, boxes) ``` * ***dataset*** will contain : 1. center : coordinates of center point in box 2. scale : scale of bounding box 3. personid : unique value for each bounding box which is basically person 4. img_size, mean, std: default values which can be changed from config file 5. img_cv2 : image 6. cfg : configuration 7. train : which is set false while testing ``` python= self.cfg = cfg self.img_cv2 = img_cv2 assert train == False, "ViTDetDataset is only for inference" self.train = train self.img_size = cfg.MODEL.IMAGE_SIZE self.mean = 255. * np.array(self.cfg.MODEL.IMAGE_MEAN) self.std = 255. * np.array(self.cfg.MODEL.IMAGE_STD) # Preprocess annotations boxes = boxes.astype(np.float32) self.center = (boxes[:, 2:4] + boxes[:, 0:2]) / 2.0 self.scale = (boxes[:, 2:4] - boxes[:, 0:2]) / 200.0 self.personid = np.arange(len(boxes), dtype=np.int32) ``` * ***dataloader*** is provided by PyTorch library which helps to load data in batches ``` python= dataloader = torch.utils.data.DataLoader(dataset, batch_size=8, shuffle=False, num_workers=0) ``` ### Output of model * We load data into HMR2.0 model in batches and result is stored in ***out*** ``` python= for batch in dataloader: batch = recursive_to(batch, device) with torch.no_grad(): out = model(batch) ``` * The model will return : 1. pred_cam : Camera prediction 2. pred_smpl_params : this contains smpl parameters which help us extract pred_vertices, pred_keypoints_3d etc. 3. pred_cam_t : Predicted camera translation 4. focal_length : Default focal length from cfg. 5. pred_keypoints_3d : 3D vertices of human body key points/joint points 6. pred_vertices : This contains 3D vertices of human body in image(resized image that is sent as input) ![image](https://hackmd.io/_uploads/H1MKgku-0.png) * we use these pred_vertices to generated human mesh ``` python= import trimesh mesh = trimesh.Trimesh(out['pred_vertices'][n].detach().cpu().numpy().copy(), model.smpl.faces.copy()) # initial mesh.show() ``` ![image](https://hackmd.io/_uploads/SySTek_-C.png) 7. pred_keypoints_2d ### Working of model 1. We use ***ViT transformer*** backbone to extract image tokens ``` python= # 4D-Humans/hmr2/models/hmr2.py def create_backbone(cfg): if cfg.MODEL.BACKBONE.TYPE == 'vit': return vit(cfg) else: raise NotImplementedError('Backbone type is not implemented') self.backbone = create_backbone(cfg) # Compute conditioning features using the backbone # if using ViT backbone, we need to use a different aspect ratio conditioning_feats = self.backbone(x[:,:,:,32:-32]) ``` 2. ***Transformer Decoder*** - ###### (refer 4D-Humans/hmr2/models/components/pose_transformer.py , 4D-Humans/hmr2/models/heads/smpl_head.py) * We pass the image tokens (conditioning_feats) from ***ViT transformer*** as input * We use a standard transformer with multi-head self-attention. This processes a single (zero) input token by cross-attending to the output image and ends with linear readout of Θ. ``` python= # 4D-Humans/hmr2/models/heads/smpl_head.py def build_smpl_head(cfg): smpl_head_type = cfg.MODEL.SMPL_HEAD.get('TYPE', 'hmr') if smpl_head_type == 'transformer_decoder': return SMPLTransformerDecoderHead(cfg) else: raise ValueError('Unknown SMPL head type: {}'.format(smpl_head_type)) ``` ```python= # 4D-Humans/hmr2/models/hmr2.py # Create SMPL head self.smpl_head = build_smpl_head(cfg) # smpl_head is Cross-attention based SMPL Transformer decoder pred_smpl_params, pred_cam, _ = self.smpl_head(conditioning_feats) ``` * From config, we get number of joints and joints representation type that we want. * ***npose*** is basically number of pose parameters we want (if joint_rep_type=23, joint_rep_dim=6 then npose=144 ) ``` python= # 4D-Humans/hmr2/models/heads/smpl_head.py self.joint_rep_type = cfg.MODEL.SMPL_HEAD.get('JOINT_REP', '6d') self.joint_rep_dim = {'6d': 6, 'aa': 3}[self.joint_rep_type] npose = self.joint_rep_dim * (cfg.SMPL.NUM_BODY_JOINTS + 1) ``` * Initialize body_pose, betas(shape), camera ***mean_params*** refers to a set of average or typical parameters representing various aspects of human body characteristics ``` python= # 4D-Humans/hmr2/models/heads/smpl_head.py # SMPL.MEAN_PARAMS: data/smpl_mean_params.npz mean_params = np.load(cfg.SMPL.MEAN_PARAMS) init_body_pose = torch.from_numpy(mean_params['pose'].astype(np.float32)).unsqueeze(0) init_betas = torch.from_numpy(mean_params['shape'].astype('float32')).unsqueeze(0) init_cam = torch.from_numpy(mean_params['cam'].astype(np.float32)).unsqueeze(0) ``` * Transfomer is imported from pose_transformer.py ``` python= # 4D-Humans/hmr2/models/heads/smpl_head.py self.transformer = TransformerDecoder( **transformer_args) ``` * Here we pass the input token(x) into transformer(***token***) and get the desired output (need to understand IEF_ITERS, assuming its Iterative Error Feedback) ```python= # 4D-Humans/hmr2/models/heads/smpl_head.py pred_body_pose = init_body_pose pred_betas = init_betas pred_cam = init_cam pred_body_pose_list = [] pred_betas_list = [] pred_cam_list = [] for i in range(self.cfg.MODEL.SMPL_HEAD.get('IEF_ITERS', 1)): # Input token to transformer is zero token if self.input_is_mean_shape: token = torch.cat([pred_body_pose, pred_betas, pred_cam], dim=1)[:,None,:] else: token = torch.zeros(batch_size, 1, 1).to(x.device) # Pass through transformer token_out = self.transformer(token, context=x) token_out = token_out.squeeze(1) # (B, C) # Readout from token_out pred_body_pose = self.decpose(token_out) + pred_body_pose pred_betas = self.decshape(token_out) + pred_betas pred_cam = self.deccam(token_out) + pred_cam pred_body_pose_list.append(pred_body_pose) pred_betas_list.append(pred_betas) pred_cam_list.append(pred_cam) # Convert self.joint_rep_type -> rotmat joint_conversion_fn = { '6d': rot6d_to_rotmat, 'aa': lambda x: aa_to_rotmat(x.view(-1, 3).contiguous()) }[self.joint_rep_type] pred_smpl_params_list = {} pred_smpl_params_list['body_pose'] = torch.cat([joint_conversion_fn(pbp).view(batch_size, -1, 3, 3)[:, 1:, :, :] for pbp in pred_body_pose_list], dim=0) pred_smpl_params_list['betas'] = torch.cat(pred_betas_list, dim=0) pred_smpl_params_list['cam'] = torch.cat(pred_cam_list, dim=0) pred_body_pose = joint_conversion_fn(pred_body_pose).view(batch_size, self.cfg.SMPL.NUM_BODY_JOINTS+1, 3, 3) pred_smpl_params = {'global_orient': pred_body_pose[:, [0]], 'body_pose': pred_body_pose[:, 1:], 'betas': pred_betas} return pred_smpl_params, pred_cam, pred_smpl_params_list ``` * ***joint_conversion_fn*** is a function that converts a given representation of joint rotations to rotation matrices. It is determined based on the value of joint_rep_type, which can be either '6d' or 'aa' (axis-angle representation). * If joint_rep_type is '6d', then joint_conversion_fn refers to the rot6d_to_rotmat function, which converts a batch of 6D rotation representations to corresponding rotation matrices using the method described in the paper by Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019. ```python= # 4D-Humans/hmr2/utils/geometry.py def rot6d_to_rotmat(x: torch.Tensor) -> torch.Tensor: """ Convert 6D rotation representation to 3x3 rotation matrix. Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 Args: x (torch.Tensor): (B,6) Batch of 6-D rotation representations. Returns: torch.Tensor: Batch of corresponding rotation matrices with shape (B,3,3). """ x = x.reshape(-1,2,3).permute(0, 2, 1).contiguous() a1 = x[:, :, 0] a2 = x[:, :, 1] b1 = F.normalize(a1) b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) b3 = torch.cross(b1, b2) return torch.stack((b1, b2, b3), dim=-1) ``` * The ***Transformer Decoder(smpl_head)*** will return : 1. ***pred_smpl_params*** : this contains global_orient, body_pose, betas 2. ***pred_cam*** 3. ***pred_smpl_params_list*** 3. Now using the above outputs we get : 1. pred_cam 2. pred_smpl_params : this contains smpl parameters which help us extract pred_vertices, pred_keypoints_3d etc. 3. pred_cam_t 4. focal_length 5. pred_keypoints_3d 6. pred_vertices 7. pred_keypoints_2d : Using perspective_projection we extract pred_keypoints_2d from pred_keypoints_3d and pred_cam_t ``` python= # 4D-Humans/hmr2/models/hmr2.py pred_smpl_params, pred_cam, _ = self.smpl_head(conditioning_feats) # Store useful regression outputs to the output dict output = {} output['pred_cam'] = pred_cam output['pred_smpl_params'] = {k: v.clone() for k,v in pred_smpl_params.items()} # Compute camera translation device = pred_smpl_params['body_pose'].device dtype = pred_smpl_params['body_pose'].dtype focal_length = self.cfg.EXTRA.FOCAL_LENGTH * torch.ones(batch_size, 2, device=device, dtype=dtype) pred_cam_t = torch.stack([pred_cam[:, 1], pred_cam[:, 2], 2*focal_length[:, 0]/(self.cfg.MODEL.IMAGE_SIZE * pred_cam[:, 0] +1e-9)],dim=-1) output['pred_cam_t'] = pred_cam_t output['focal_length'] = focal_length # Compute model vertices, joints and the projected joints pred_smpl_params['global_orient'] = pred_smpl_params['global_orient'].reshape(batch_size, -1, 3, 3) pred_smpl_params['body_pose'] = pred_smpl_params['body_pose'].reshape(batch_size, -1, 3, 3) pred_smpl_params['betas'] = pred_smpl_params['betas'].reshape(batch_size, -1) smpl_output = self.smpl(**{k: v.float() for k,v in pred_smpl_params.items()}, pose2rot=False) pred_keypoints_3d = smpl_output.joints pred_vertices = smpl_output.vertices output['pred_keypoints_3d'] = pred_keypoints_3d.reshape(batch_size, -1, 3) output['pred_vertices'] = pred_vertices.reshape(batch_size, -1, 3) pred_cam_t = pred_cam_t.reshape(-1, 3) focal_length = focal_length.reshape(-1, 2) pred_keypoints_2d = perspective_projection(pred_keypoints_3d, translation=pred_cam_t, focal_length=focal_length / self.cfg.MODEL.IMAGE_SIZE) output['pred_keypoints_2d'] = pred_keypoints_2d.reshape(batch_size, -1, 2) ``` Renderer --- ###### (refer 4D-Humans/hmr2/utils/renderer.py) * Resize image to size 255x255 ``` python= image = image.clone() * torch.tensor(self.cfg.MODEL.IMAGE_STD, device=image.device).reshape(3,1,1) image = image + torch.tensor(self.cfg.MODEL.IMAGE_MEAN, device=image.device).reshape(3,1,1) image = image.permute(1, 2, 0).cpu().numpy() ``` * Initialize renderer and material ``` python= renderer = pyrender.OffscreenRenderer(viewport_width=image.shape[1], viewport_height=image.shape[0], point_size=1.0) material = pyrender.MetallicRoughnessMaterial( metallicFactor=0.0, alphaMode='OPAQUE', baseColorFactor=(*mesh_base_color, 1.0)) ``` * We create mesh from pred_vertices(from model output) ```python= mesh = trimesh.Trimesh(vertices.copy(), self.faces.copy()) ``` * To get top view or side view we rotate the mesh ``` python= if side_view: rot = trimesh.transformations.rotation_matrix( np.radians(rot_angle), [0, 1, 0]) mesh.apply_transform(rot) elif top_view: rot = trimesh.transformations.rotation_matrix( np.radians(rot_angle), [1, 0, 0]) mesh.apply_transform(rot) ``` * We convert the trimesh to pyrender mesh and add it to scene (It contains the 3D objects (meshes, lights, cameras) that you want to render). ```python= mesh = pyrender.Mesh.from_trimesh(mesh, material=material) # initialize pyrender scene scene = pyrender.Scene(bg_color=[*scene_bg_color, 0.0], ambient_light=(0.3, 0.3, 0.3)) scene.add(mesh, 'mesh') ``` * Add camera to scene ```python= camera_pose = np.eye(4) camera_pose[:3, 3] = camera_translation camera_center = [image.shape[1] / 2., image.shape[0] / 2.] camera = pyrender.IntrinsicsCamera(fx=self.focal_length, fy=self.focal_length, cx=camera_center[0], cy=camera_center[1], zfar=1e12) scene.add(camera, pose=camera_pose) ``` * Adding lights ``` python= light_nodes = create_raymond_lights() for node in light_nodes: scene.add_node(node) ``` * Get image(color variable) from the scene using renderer.render ```python= color, rend_depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA) color = color.astype(np.float32) / 255.0 renderer.delete() ``` >visualize of ***color*** variable ![image](https://hackmd.io/_uploads/HJFf8-u-A.png) * Add this mesh to the resized image ```python= valid_mask = (color[:, :, -1])[:, :, np.newaxis] if not side_view and not top_view: output_img = (color[:, :, :3] * valid_mask + (1 - valid_mask) * image) else: output_img = color[:, :, :3] output_img = output_img.astype(np.float32) ``` >![image](https://hackmd.io/_uploads/rkLLpZu-A.png) Evaluation --- * Testing on 3DPW test dataset. * ***MPJPE Mean Per Joint Position Error*** (in mm) It measures the average Euclidean distance from prediction to ground truth joint positions. The evaluation adjusts the translation (tx,ty,tz) of the prediction to match the ground truth. >$\text{mpjpe} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{D} (\text{pred_joints}_{ij} - \text{gt_joints}_{ij})^2}$ >Where: **mpjpe** represents the mean per joint position error. **N** is the number of samples. **D** is the number of dimensions (e.g., 2 for 2D coordinates, 3 for 3D coordinates). **pred_joints** is the jth dimension of the predicted joint position for the iith sample. **gt_joints** is the jth dimension of the ground truth joint position for the iith sample. * ***RE Reconstruction Error*** Computes the mean Euclidean distance of 2 set of points S1, S2 after performing Procrustes alignment. >$\text{re} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{D} \left(\hat{S}_{1_{ij}} - S_{2_{ij}}\right)^2}$ >Where: **re** represents the reconstruction error. **N** is the number of samples. **D** is the number of dimensions (e.g., 3 for 3D coordinates). **S1ij** is the jth dimension of the aligned predicted joint position for the ith sample. **S2ij** is the jth dimension of the ground truth joint position for the ith sample. ```python= # re def reconstruction_error(S1, S2) -> np.array: """ Computes the mean Euclidean distance of 2 set of points S1, S2 after performing Procrustes alignment. Args: S1 (torch.Tensor): First set of points of shape (B, N, 3). S2 (torch.Tensor): Second set of points of shape (B, N, 3). Returns: (np.array): Reconstruction error. """ S1_hat = compute_similarity_transform(S1, S2) re = torch.sqrt( ((S1_hat - S2)** 2).sum(dim=-1)).mean(dim=-1) return re #mpjre and re def eval_pose(pred_joints, gt_joints) -> Tuple[np.array, np.array]: """ Compute joint errors in mm before and after Procrustes alignment. Args: pred_joints (torch.Tensor): Predicted 3D joints of shape (B, N, 3). gt_joints (torch.Tensor): Ground truth 3D joints of shape (B, N, 3). Returns: Tuple[np.array, np.array]: Joint errors in mm before and after alignment. """ # Absolute error (MPJPE) mpjpe = torch.sqrt(((pred_joints - gt_joints) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy() # Reconstruction_error r_error = reconstruction_error(pred_joints, gt_joints).cpu().numpy() return 1000 * mpjpe, 1000 * r_error pred_keypoints_3d = output['pred_keypoints_3d'].detach() pred_keypoints_3d = pred_keypoints_3d[:,None,:,:] batch_size = pred_keypoints_3d.shape[0] num_samples = pred_keypoints_3d.shape[1] gt_keypoints_3d = batch['keypoints_3d'][:, :, :-1].unsqueeze(1).repeat(1, num_samples, 1, 1) # Align predictions and ground truth such that the pelvis location is at the origin pred_keypoints_3d -= pred_keypoints_3d[:, :, [self.pelvis_ind]] gt_keypoints_3d -= gt_keypoints_3d[:, :, [self.pelvis_ind]] # Compute joint errors mpjpe, re = eval_pose(pred_keypoints_3d.reshape(batch_size * num_samples, -1, 3)[:, self.keypoint_list], gt_keypoints_3d.reshape(batch_size * num_samples, -1 ,3)[:, self.keypoint_list]) ``` * ***kp_l2_loss***: compute 2d keypoint error ```python= # Compute 2d keypoint errors pred_keypoints_2d = output['pred_keypoints_2d'].detach() pred_keypoints_2d = pred_keypoints_2d[:,None,:,:] gt_keypoints_2d = batch['keypoints_2d'][:,None,:,:].repeat(1, num_samples, 1, 1) conf = gt_keypoints_2d[:, :, :, -1].clone() kp_err = torch.nn.functional.mse_loss( pred_keypoints_2d, gt_keypoints_2d[:, :, :, :-1], reduction='none' ).sum(dim=3) kp_l2_loss = (conf * kp_err).mean(dim=2) kp_l2_loss = kp_l2_loss.detach().cpu().numpy() ``` * After running 4D-Humans/eval.py on 3DPW test dataset, here are the results : * **re** : 54.32551111588927 * **mpjpe** : 81.26772677982657 PHALP --- ### Tracker(Matching tracks and detections) * Initialize: * Metric using is **NearestNeighborDistanceMetric** ```python= def setup_deepsort(self): log.info("Setting up DeepSort...") metric = nn_matching.NearestNeighborDistanceMetric(self.cfg, self.cfg.phalp.hungarian_th, self.cfg.phalp.past_lookback) self.tracker = Tracker(self.cfg, metric, max_age=self.cfg.phalp.max_age_track, n_init=self.cfg.phalp.n_init, phalp_tracker=self, dims=[4096, 4096, 99]) ``` * Tracker wll contain set of tracks. Tracks basically contains tracking data of each person. * This is code from trackers/PHALP.py ```python= ############ tracking ############## self.tracker.predict() self.tracker.update(detections, t_, frame_name, self.cfg.phalp.shot) ``` * `self.tracker.predict()` does is for each track it will increase age & time_since_update by 1. ```python= #deep_sort_/tracker.py def predict(self): """Propagate track state distributions one time== step forward. This function should be called once every time step, before `update`.== """ for track in self.tracks: track.predict(self.phalp_tracker, increase_age=True) #deep_sort_/track.py def predict(self, phalp_tracker, increase_age=True): if(increase_age): self.age += 1; self.time_since_update += 1 ``` * `self.tracker.update()` will perform measurement update and track management. Function inputs are detections(outputs from HMR2.0), frame_name and self.cfg.phalp.shot which tells whether there is scene change in frame or not. * Using deep_sort_/linear_assignment.py we try to match detection with tracks. min_cost_matching() is where this matching takes place. distance_matric over here is gated_metric from tracker.py that cost matrix of shape len(targets), len(features), where element (i, j) contains the closest squared distance between `targets[i]` and `features[j]`. * Basically we have tracking data for before frames. Now after running HMR on new frame we try to match detected people with tracking data for before frames using nearest neighbor distance metric (Euclidean) (Check out linear_assignment.py and nn_matching). ### self.tracker.update(self, detections, frame_t, image_name, shot) * Below statistics = [cost_matrix, track_gt, detect_gt, track_idt, detect_idt]. Matches contain list of matching tracks and detections. ```python= matches, unmatched_tracks, unmatched_detections, statistics = self._match(detections) self.tracked_cost[frame_t] = [statistics[0], matches, unmatched_tracks, unmatched_detections, statistics[1], statistics[2], statistics[3], statistics[4]] ``` * If we get unmatched detections then we create new track ```python= for detection_idx in unmatched_detections: self._initiate_track(detections[detection_idx], detection_idx) def _initiate_track(self, detection, detection_id): new_track = Track(self.cfg, self._next_id, self.n_init, self.max_age, detection_data=detection.detection_data, detection_id=detection_id, dims=[self.A_dim, self.P_dim, self.L_dim]) new_track.add_predicted() self.tracks.append(new_track) self._next_id += 1 ``` * If track is not found/matched from detections then we wait for certain age(self._max_age) or if the track is tentative, then delete ```python= for track_idx in unmatched_tracks: self.tracks[track_idx].mark_missed() self.tracks = [t for t in self.tracks if not t.is_deleted()] def mark_missed(self): """Mark this track as missed (no association at the current time step). """ if self.state == TrackState.Tentative: self.state = TrackState.Deleted elif self.time_since_update > self._max_age: self.state = TrackState.Deleted ``` * If track and detection is matching then we append the track with latest detection values ```python= # tracker.py for track_idx, detection_idx in matches: self.tracks[track_idx].update(detections[detection_idx], detection_idx, shot) self.accumulate_vectors([i[0] for i in matches], features=self.cfg.phalp.predict) # track.py def update(self, detection, detection_id, shot): self.track_data["history"].append(copy.deepcopy(detection.detection_data)) ``` * Accumulate vectors will save all tracks pose and location(we use these for prediction) features under p_features and l_features respectively and then predict. ```python= def accumulate_vectors(self, track_ids, features="APL"): a_features = []; p_features = []; l_features = []; t_features = []; l_time = []; confidence = []; is_tracks = 0; p_data = [] for track_idx in track_ids: t_features.append([self.tracks[track_idx].track_data['history'][i]['time'] for i in range(self.cfg.phalp.track_history)]) l_time.append(self.tracks[track_idx].time_since_update) if("L" in features): l_features.append(np.array([self.tracks[track_idx].track_data['history'][i]['loca'] for i in range(self.cfg.phalp.track_history)])) if("P" in features): p_features.append(np.array([self.tracks[track_idx].track_data['history'][i]['pose'] for i in range(self.cfg.phalp.track_history)])) if("P" in features): t_id = self.tracks[track_idx].track_id; p_data.append([[data['xy'][0], data['xy'][1], data['scale'], data['scale'], data['time'], t_id] for data in self.tracks[track_idx].track_data['history']]) if("L" in features): confidence.append(np.array([self.tracks[track_idx].track_data['history'][i]['conf'] for i in range(self.cfg.phalp.track_history)])) is_tracks = 1 ``` * Now we run prediction ```python= if(is_tracks): with torch.no_grad(): if("P" in features): p_pred = self.phalp_tracker.forward_for_tracking([p_features, p_data, t_features], "P", l_time) if("L" in features): l_pred = self.phalp_tracker.forward_for_tracking([l_features, t_features, confidence], "L", l_time) ``` ### POSE TRANSFORMER (pose_prediction) (refer phalp/models/predictor/pose_transformer_v2.py) * We use it in predicting pose(forward_for_tracking() from phalp/trackers/PHALP.py) * We use Bidirectional Encoder Representations from Transformers(BERT). * This prediction work is taken from LART paper(https://arxiv.org/pdf/2304.01199) * If any track detection is missing then we mask it. ![image](https://hackmd.io/_uploads/Hyh-FR7fC.png) ### Location prediction (refer phalp/trackers/PHALP.py forward_for_tracking function) * We try to predict location values i.e n, x & y. * We use Ridge(Linear) regression for this prediction Rough Points --- * In fluid mechanics, we have Lagrangian and Eulerian specifications of the flow field. * In Eulerian, we fix specific locations in space through which fluid flows as time passes (Concerned with the fluid properties at a specific space-time point). * In Lagrangian we fix particular particles as it moves through space. * LART is basicallyy focused on Lagrangian viewpoint for analysing human actions. * Given these 3D representations of people (i.e., 3D pose and 3D location), we use them as the basic content of each token.This allows us to build a flexible system where the model, here a transformer, takes as input tokens corresponding to the different people with access to their identity, 3D pose and 3D location. * In PHALP paper(earlier version), for prediction they have used probability but here we use BERT. To look into (IMPORTANT) --- * The predicted pose and location values are not at all used. They are deleted afterwards. * 4D-humans on video is just running HMR-2.0 on each frame and generating meshes. * https://github.com/shubham-goel/4D-Humans/issues/29

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully