--- tags: mathematics, category theory --- ([up](https://hackmd.io/@alexhkurz/HJTOwSSjw)) # Create, Detect, Lift, Preserve, Reflect Limits (2) $$\mathcal I \stackrel D \longrightarrow \mathcal A \stackrel F \longrightarrow \mathcal B$$ --- Recall: $F$ *reflects limits* if $F\alpha$ limiting implies that $\alpha$ is limiting. **Proposition:** If $F$ is fully faithful, then $F$ reflects limits. https://ncatlab.org/nlab/show/reflected+limit *Proof:* Let $\alpha$ be a cone in $\mathcal A(A,D)\lhd \psi$. [^weighted] [^weighted]: $\mathcal A(A,D)\lhd \psi$ stands for set of natural transformations from the object $A$ to the functor $D$. The notation extends to the case of so-called weighted limits. $F\alpha$ is cone in $\mathcal B(FA,FD)\lhd\psi$. If $F\alpha$ is limiting then it corresponds to the identity $i$ on the lhs of $\mathcal B(FA,\lim_\psi FD)\cong\mathcal B(FA,FD)\lhd\psi$. That is, $FA=\lim_\psi FD$. Since $F$ is fully faithful, $\alpha$ is the limiting cone corresponding to the identity on the lhs of $\mathcal A(A,A)\cong\mathcal A(A,D)\lhd\psi$. QED --- Recall: - $F$ *preserves limits* if for all cones $\alpha$ we have that $\alpha$ limiting implies $F\alpha$ limiting. - $F$ is conservative if $Ff$ iso implies $f$ iso. **Proposition:** If $F$ is conservative and preserves limits, then $F$ reflects all limits that exist in the domain. https://ncatlab.org/nlab/show/reflected+limit *Proof:* Let $\alpha$ be a cone in $\mathcal A(\lim_\psi D,D)\lhd \psi$. Let $a$ be its transpose on the left-hand side of $\mathcal A(\lim_\psi D,\lim_\psi D) \cong \mathcal A(\lim_\psi D,D)\lhd \psi$. Then $F\alpha$ is a cone in $\mathcal B(F\lim_\psi D,FD)\lhd\psi$. If $F\alpha$ is limiting then it arises from the identity arrow $i$ on the left-hand side of $\mathcal B(F\lim_\psi D,F\lim_\psi D)\cong\mathcal B(F\lim_\psi D,FD)\lhd\psi$. $i=Fa$. Since $F$ is conservative, $a$ must be an iso on $\lim_\psi D$, hence $\alpha$ was limiting. QED