(draft) ## Summary Properties of adjoints and (co)units are linked as follows. | counit componentwise | right adjoint| |:---:|:---:| | epi | faithful | | split mono | full | | unit componentwise| left adjoint| |:---:|:---:| | mono | faithful | | split epi | full | ## The Theorem Let $F:X\to A$, $G:A\to X$, $F\dashv G$, $\eta_x:x\to GFx$, $\epsilon_a:FGa\to a$. ![](https://hackmd.io/_uploads/Hk_kNrB83.png =600x) Mac Lane, page 88: ![](https://hackmd.io/_uploads/B1aZI1Sji.png) This is proved using: ![](https://hackmd.io/_uploads/SJRXUJSos.png) ## The Proof For variety, we prove the dual of lemma and theorem. **Lemma:** Let $f^\ast:X(-,y) \to X(-,z)$ given by Yoneda for $f:y\to z$. Then $f^\ast$ is componentwise injective iff $f$ is mono and $f^\ast$ is componentwise onto iff $f$ is split epi. *Proof:* This is straightforward from the respective definitions. To prove the dual of the theorem, consider $$X(x,y)\stackrel {F_{x,y}} \longrightarrow A(Fx,Fy) \stackrel \cong \longrightarrow X(x,UFy)$$ which is the transformation natural in $x$ determined (via Yoneda) by the unit $\eta_y:y\to UFy$. The lemma tells us that the natural transformation (hence $F_{x,y}$) is componentwise injective iff $\eta_y$ is mono and is componentwise surjective iff $\eta_y$ is split epi. We have shown that $F$ is faithful iff the unit is componentwise mono and full iff the unit is componentwise split epi. --- https://q.uiver.app/#q=WzAsNixbMSwxLCJYIl0sWzMsMSwiQSJdLFswLDAsIngiXSxbMCwyLCJHRngiXSxbNCwwLCJGR2EiXSxbNCwyLCJhIl0sWzAsMSwiRiIsMCx7ImN1cnZlIjotMn1dLFsxLDAsIkciLDAseyJjdXJ2ZSI6LTJ9XSxbMCwxLCJcXGJvdCIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6Im5vbmUifSwiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFsyLDMsIlxcZXRhX3giLDFdLFs0LDUsIlxcdmFyZXBzaWxvbl9hIiwxXV0=