Try   HackMD

Neighbourhood Coalgebras

(draft) … (up)

The idea of the following is to run through (Hansen, Kupke, Pacuit, 2009) and analyse it from the point of view of cospan bisimulation.

Def: Let

RβŠ†XΓ—Y. The dual relation
Rβˆ‚:2X↬2Y
is defined by
R[a]βŠ†b
.

Remark:

(a,b) are called
R
-coherent in Def 2.1 of Hansen-Kupke-Pacuit if
(a,b)∈Rβˆ‚
and
(b,a)∈(Rβˆ’1)βˆ‚
.

Recall that the connected component functor

C:Ord→Set is left-adjoint to the discrete functor
D:Set→Ord
. Also recall that the ordification of the neighbourhood functor is $D2{2{C-}}, see Theorem 8 in [DK17] and the section on Cospan Bisimulation.

Definition: A neighbourhood frame is a set

X with a function
X→22X
. An ordered neighbourhood frame is an ordered set
X
with an order-preserving function
X→D22CX
.

Remark: The function

f:X→Y in
Set
[1] is a coalgebra morphism from
ξ:X→22X
to
ν:Y→22Y
iff
βˆ€a∈ξ(x).βˆƒb∈ν(y).(βˆ€x∈a.βˆƒy∈b.fx=y) & (βˆ€y∈b.βˆƒx∈a.fx=y)βˆ€b∈ν(y).βˆƒa∈ξ(x).(βˆ€x∈a.βˆƒy∈b.fx=y) & (βˆ€y∈b.βˆƒx∈a.fx=y)

Remark: Similarly,

R is a bisimulation if
xRy
implies

βˆ€a∈ξ(x).βˆƒb∈ν(y).(βˆ€x∈a.βˆƒy∈b.xRy) & (βˆ€y∈b.βˆƒx∈a.xRy)βˆ€b∈ν(y).βˆƒa∈ξ(x).(βˆ€x∈a.βˆƒy∈b.xRy) & (βˆ€y∈b.βˆƒx∈a.xRy)

References

Hansen, Kupke, Pacuit: Neighbourhood Structures: Bisimilarity and Basic Model Theory. 2009. (Definition 2.1., …)

Dahlqvist and Kurz: The Positivication of Coalgebraic Logics. CALCO 2017. (Section 3.3 and 3.4)


  1. The function

    f:X→Y in
    Ord
    is a coalgebra morphism from
    ξ:X→D22CX
    to
    ν:Y→D22CY
    iff

    βˆ€a∈ξ(x).βˆƒb∈ν(y).(βˆ€x∈a.βˆƒy∈b.fx=y) & (βˆ€y∈b.βˆƒx∈a.fx―=y―)βˆ€b∈ν(y).βˆƒa∈ξ(x).(βˆ€x∈a.βˆƒy∈b.fx=y) & (βˆ€y∈b.βˆƒx∈a.fx―=y―)

    where

    y― denotes the connected component of
    y
    . β†©οΈŽ