Alexander Kurz
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    --- slideOptions: theme: white # default # solarized #night transition: fade # none/fade/slide/convex/concave/zoom transitionSpeed: slow # default/fast/slow spotlight: enabled: false controls: false --- <style type="text/css"> .reveal ul { display: block; } .reveal ol { display: block; } .reveal { font-size: 30px; } .reveal p { text-align: left; margin-top: 25px; margin-bottom: 25px; /* Adjust the value as needed */ } .custom-space { display: block; margin-top: 50px; /* Less space than <br> */ } .reveal h1, .reveal h2, .reveal h3, .reveal h4, .reveal h5, .reveal h6 { text-transform: none; /* no forced upper case in headings*/ } .reveal .slides section h1:after, /* not doing much*/ .reveal .slides section h2:after, .reveal .slides section h3:after { content: ''; flex-grow: 1; /* This will make the pseudo-element grow */ display: block; /* Converts the pseudo-element to a block, allowing it to be sized */ } </style> ## Canonical Extensions of Quantale-Enriched Categories <br> #### TACL, July 4, 2024 <br> ###### Alexander Kurz ###### Chapman University <br> ###### jww Apostolos Tzimoulis (Vrije Universiteit van Amsterdam) <br> --- ###### <font color=grey>(this page is empty)</font> $$\newcommand{\cont}{{\bf I}}$$ --- ### Motivation - Many-valued logic ( -> quantales) - Formal context canalysis ( -> MacNeille completion) - Modal logic over formal contexts ( -> canonical extension) --- ### Complete Lattices "Incidence" relation $\cont:X\times A\to 2$. $\cont^\uparrow:\mathcal DX\to\mathcal UA\quad$, $\quad\cont^\uparrow(\phi)=\{a\in A \mid \color{blue}{\forall x\in X\,.\, x\in\phi \Rightarrow \cont(x,a)}\}$ $\cont^\downarrow:\mathcal UA\to\mathcal DX\quad$, $\quad\cont^\downarrow(\psi)=\{x\in X \mid \color{blue}{\forall a\in A \,.\, \cont(x,a) \Leftarrow a\in\psi} \}$ <span class="custom-space"></span> Rewrite this as $\cont^\uparrow(\phi) \ =\ \bigwedge_x (\,\phi(x)\Rightarrow \cont(x,-)\,) \ =\ \color{blue}{\phi\blacktriangleright \cont}$ $\cont^\downarrow(\psi) \ =\ \bigwedge_a(\, \cont(-,a) \Leftarrow \psi(a)\,) \ =\ \color{blue}{\cont\blacktriangleleft \psi}$ --- ### MacNeille Completionasdfasdf The following is sometimes known as the Isbell adjunction: $$ \cont^\uparrow\dashv \cont^\downarrow $$ Order-enriched: $\cont^\uparrow \cont^\downarrow$ and $\cont^\downarrow \cont^\uparrow$ are closure operators. The **MacNeille completion** $\mathcal M(I)$ is the set of fixed points $$(\phi,\psi),$$ that is, $$\color{blue}{\phi\blacktriangleright\cont} = \psi \quad\quad\quad\quad \phi = \color{blue}{\cont\blacktriangleleft\psi}$$ --- ## Enriching over a Quantale A quantale is a monoid $(\Omega,e,\cdot)$ in the category of sup-lattices. $$ b\,\sqsubseteq\, \color{blue}{a\rhd c} \quad \Leftrightarrow \quad a \cdot b \,\sqsubseteq\, c \quad \Leftrightarrow \quad a\,\sqsubseteq\, \color{blue}{c\lhd b} $$ <span class="custom-space"></span> **Example**: The Lawvere Quantale. **Example**: The quantale of all languages. **Example**: The quantale of all binary relations on a set. **Example**: Relational presheaves for an arbitrary quantale. <span class="custom-space"></span> We call an **$\Omega$-space** a category enriched over a quantale $\Omega$. --- ## Non-Commutative Quantales Define $\Omega^o$ to be $\Omega$ with reverse multiplication. For an $\Omega$-space $X$ define $X^o(x,y) = X(y,x)$. **Fact:** $\ X^o$ is $\Omega^o$-enriched iff $X$ is $\Omega$-enriched. Intuitively, a **relation** should be a functor $R:X^o\otimes A\to \Omega$. **Def:** An **$\Omega$-relation** $\color{blue}{R: X\looparrowright A}$ is a function $X\times A\to\Omega$ s.t. $$X(x',x)\cdot R(x,y)\sqsubseteq R(x',y)$$ $$R(x,y)\cdot Y(y,y')\sqsubseteq R(x,y')$$ <font size=5pt color=grey>(aka bimodule, profunctor, distributor, weakening relation, monotone relation, ...) </font> --- ## Weighted Relations and Implications <br> $$(R\bullet S)(x,z)=\bigvee_{y\in Y}R(x,y)\cdot S(y,z).$$ Weighted implications $\blacktriangleright$ and $\blacktriangleleft$ are defined as residuals $$R\bullet - \ \dashv\ \color{blue}{R\blacktriangleright - }\quad\quad\quad - \bullet S\ \dashv \ \color{blue}{-\blacktriangleleft S}$$ which implies \begin{gather} R\bullet (R\blacktriangleright T) \,\le \, T \quad\quad T\le R\blacktriangleright (R\bullet T) \\[1ex] (T\blacktriangleleft S)\bullet S \,\le\, T \quad\quad T \,\le\, (T\bullet R)\blacktriangleleft R \end{gather} --- ## Weighted Downsets and Upsets <span class="custom-space"></span> The elements of $\mathcal DX$ (presheaves) are $\Omega$-relations $X\looparrowright 1$ with homs $$\color{blue}{\mathcal DX(\phi',\phi)}=\phi'\blacktriangleright\phi =\bigwedge_{x\in X} (\phi' x\rhd \phi x)$$ The elements of $\mathcal UA$ (co-presheaves) are $\Omega$-relations $1\looparrowright A$ with homs $$\color{blue}{\mathcal UA(\psi,\psi')}=\psi \blacktriangleleft \psi'=\bigwedge_{a\in A} (\psi a\lhd \psi' a)$$ --- ## Weighted Limits and Colimits <span class="custom-space"></span> $G:D\to B$, $\phi\in\mathcal DD$, $\psi\in\mathcal UD$. <span class="custom-space"></span> The weighted colimit ${\rm colim}_\phi\,G$ is the solution of \begin{gather*} B(\color{blue}{{\rm colim}_\phi G},b) = \phi\blacktriangleright B(G,b) \end{gather*} <span class="custom-space"></span> The weighted limit ${\rm lim}_\psi G$ is the solution of \begin{gather*} B(b, \color{blue}{{\rm lim}_\psi G}) = B(b,G)\blacktriangleleft\psi \end{gather*} <span class="custom-space"></span> $B\to\mathcal DB$ preserves limits, $B\to\mathcal UB$ preserves colimits. $\mathcal UB$ ($\mathcal DB$) is the free (co)completion of $B$ with weighted (co)limits. --- ### MacNeille Completion ![image](https://hackmd.io/_uploads/SyPuY-KfC.png) --- ### Algebra of Weighted Relations (Examples) $$(\phi\blacktriangleright \cont)\blacktriangleleft \psi = \phi\blacktriangleright (\cont \blacktriangleleft \psi)$$ $$X(-,x)\blacktriangleright \cont = \cont(x,-)$$ $$\cont \blacktriangleleft A(a,-) = \cont(-,a)$$ $$(\cont\blacktriangleleft \cont(x,-)) \blacktriangleright \cont=\cont(x,-)$$ $$\cont\blacktriangleleft (\cont(-,a) \blacktriangleright \cont)=\cont(-,a)$$ ![image](https://hackmd.io/_uploads/HkYAobYM0.png =720x) --- ## The MacNeille Insertion <span class="custom-space"></span> $$\overline\ : X+A\to \mathcal M$$ <span class="custom-space"></span> $$\mathcal M(\overline x,\overline a) = \cont(x,a)$$ $$\mathcal M(\overline a, \overline a') = \cont(-,a)\blacktriangleright \cont(-,a')$$ $$\mathcal M(\overline x,\overline x') = \cont(x,-)\blacktriangleleft \cont(x',-)$$ $$\mathcal M(\overline a,\overline x) = \cont(-,a) \blacktriangleright \cont\blacktriangleleft \cont(x,-)$$ <span class="custom-space"></span> <font size=5pt color=grey>(These formulas show how the distance $\cont(x,a)$ determines all other distances in $\cal M$.) </font> --- ## The MacNeille Yoneda Lemma <br> \begin{gather} \mathcal M(\overline x, (\phi,\psi)) = \cont(x,-)\blacktriangleleft\psi = \phi(x)\\ \mathcal M((\phi,\psi),\overline a) = \phi\blacktriangleright \cont(-,a) = \psi(a) \end{gather} <br> <font size=5pt color=grey>(These formulas compute distances from $x$ and distances to $a$ with the Yoneda lemma.) </font> --- ## Weighted (Co)Limit Completion <span class="custom-space"></span> The colimit of $\ \overline\ :X\to\mathcal M$ weighted by $\phi$ is the upset of $\phi$ $$\phi\blacktriangleright \cont$$ <span class="custom-space"></span> The limit of $\ \overline\ :A\to\mathcal M$ weighted by $\psi$ is the downset of $\psi$ $$\cont\blacktriangleleft \psi$$ <span class="custom-space"></span> **Corollary:** $\mathcal M$ is complete. $X$ and $A$ are dense in $\cal M$: every $(\phi,\psi)$ is - the colimit of $X\to\mathcal M$ weighted by $\phi$, - the limit of $A\to\mathcal M$ weighted by $\psi$. --- ## Canonical Extension $C^\delta$ <br> ![image](https://hackmd.io/_uploads/BkBzzMFMR.png) --- ![image](https://hackmd.io/_uploads/r15LOMtfA.png =800x) **Theorem (compactness):** $C^\delta(\lim_f [-],{\rm colim}_{i}[-])=\cont (f,i).$ <font size=5pt color=grey>(In the case of 2-valued logic this property reads $\bigwedge f \le \bigvee i\ \Rightarrow \ f\cap i \not=\emptyset$.) </font> --- ## Selected References <span class="custom-space"></span> <font size=5pt> 1. F.W. Lawvere. Metric spaces, generalized logic and closed categories. 1973. 1. R. Betti and S. Kasangian. A quasi-universal realization of automata, 1982. 1. Jan Rutten. Weighted colimits and formal balls in generalized metric spaces. 1998. 1. Isar Stubbe. Categorical structures enriched in a quantaloid. 2005. 1. Dusko Pavlovic. Quantitative concept analysis. 2012. 1. Simon Willerton. Tight spans, Isbell completions and semi-tropical modules. 2013. 1. Richard Garner. Topological functors as total categories. 2014. 1. Soichiro Fujii. Completeness and injectivity. 2021. 1. J. Michael Dunn, Mai Gehrke, Alessandra Palmigiano. Canonical extensions and relational completeness of some substructural logics. 2005. </font> <span class="custom-space"></span> <font size=4pt color=grey> [1]: generalized metric spaces as enriched categories; [2]: automata as categories enriched over the quantale of languages; [3] weighted limits and colimits in metric spaces; [4]: quantale-enriched category theory; [5]: quantale-enriched generalizations of formal concept analysis; [6]: MacNeille completion of metric spaces; [7,8]: MacNeille completions of quantale-enriched categories; [9]: canonical extensions of posets. </font> --- ## Ongoing and Future Work <span class="custom-space"></span> Expanding canonical extensions with modal operators (AiML) Proof theory (jww Giuseppe Greco) Applications to many-valued (fuzzy) formal concept analysis (FCA) Category theory of quantale-enriched FCA (duality theory) Applications to logic (completeness) Relation algebra of weighted relations Axiomatizing double categories of weighted relations

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully