Bug Bash
The goal of this bug bash is to discover any bugs before Akri creates a new release (v0.13.1). This release contains changes for agent refactory and directly using kube-rs client structure in the agent.
Please leave a comment in the scenario outcomes section with the scenario's you tested and whether it was successful. If you find issues, please create an issue on Akri's GitHub and comment it in the discovered issues section.
As always, feel free to post any questions on Akri's Slack.
Akri is an Open Source project that automates the discovery and usage of IoT devices around Kubernetes clusters on the Edge. Akri can automatically deploy user-provided workloads to the discovered devices. It handles device appearance and disappearance, allowing device deployments to expand and contract and enabling high resource utilization.
Akri is regularly tested on K3s, MicroK8s, and standard Kubernetes clusters versioned 1.28-1.31 (see previous release for list of exact versions tested) with Ubuntu 20.04 node. While we only test on these K8s distributions, feel free to try it out on the distribution and Linux OS of your choice. Here are some examples of what you can do:
It is recommmended to setup a muli-node cluster as your test environment. The following bug bash scenarios are using 3-node cluster as an example.
Choose any of the following scenarios (none are pre-requisite of the others). Make sure to use the akri-dev chart (helm install akri akri-helm-charts/akri-dev
) when installing Akri with Helm. If you have previously installed akri, be sure to run helm repo update
.
# add akri helm charts repo
helm repo add akri-helm-charts https://project-akri.github.io/akri/
# ensure helm repos are up-to-date
helm repo update
Set up the Kubernetes distribution being used, here we use 'k8s', make sure to replace it with a value that matches the Kubernetes distribution you used. Refer to Kubernetes Cluster Setup | Akri for details.
export AKRI_HELM_CRICTL_CONFIGURATION="--set kubernetesDistro=k8s"
Install an Akri configuration named akri-debug-echo-foo
that uses debug echo discovery handler
helm install akri-debug-echo akri-helm-charts/akri-dev \
$AKRI_HELM_CRICTL_CONFIGURATION \
--set debugEcho.discovery.enabled=true \
--set debugEcho.configuration.name=akri-debug-echo-foo \
--set debugEcho.configuration.enabled=true \
--set debugEcho.configuration.capacity=5 \
--set debugEcho.configuration.shared=true \
--set debugEcho.configuration.brokerPod.image.repository="nginx" \
--set debugEcho.configuration.brokerPod.image.tag="stable-alpine"
The command installs an Akri configuration with debug echo discovery handler, which will discover 2 debug echo devices (foo0
and foo1
), capacity is 5
, each pod request 1
instance-level resource.
Here is the result of running the installation command above on a cluster with 1 control plane and 2 work nodes. There are 2 pods running on each node.
$ kubectl get nodes,akric,akrii,pods
NAME STATUS ROLES AGE VERSION
node/kube-01 Ready control-plane 22d v1.26.1
node/kube-02 Ready <none> 22d v1.26.1
node/kube-03 Ready <none> 22d v1.26.1
NAME CAPACITY AGE
configuration.akri.sh/akri-debug-echo-foo 5 2m58s
NAME CONFIG SHARED NODES AGE
instance.akri.sh/akri-debug-echo-foo-8120fe akri-debug-echo-foo true ["kube-02","kube-03"] 2m44s
instance.akri.sh/akri-debug-echo-foo-a19705 akri-debug-echo-foo true ["kube-02","kube-03"] 2m45s
NAME READY STATUS RESTARTS AGE
pod/akri-agent-daemonset-gk29m 1/1 Running 0 2m58s
pod/akri-agent-daemonset-rzc88 1/1 Running 0 2m58s
pod/akri-controller-deployment-7d786778cf-9mcfh 1/1 Running 0 2m58s
pod/akri-debug-echo-discovery-daemonset-4dhl2 1/1 Running 0 2m58s
pod/akri-debug-echo-discovery-daemonset-jd677 1/1 Running 0 2m58s
pod/akri-webhook-configuration-6b4f74c4cc-zkszc 1/1 Running 0 2m58s
pod/kube-02-akri-debug-echo-foo-8120fe-pod 1/1 Running 0 2m44s
pod/kube-02-akri-debug-echo-foo-a19705-pod 1/1 Running 0 2m45s
pod/kube-03-akri-debug-echo-foo-8120fe-pod 1/1 Running 0 2m44s
pod/kube-03-akri-debug-echo-foo-a19705-pod 1/1 Running 0 2m45s
Now deploy a deployment that requests 3 configuration-level resources in a container, since only 2 instances are available, the deployment will be in 'Pending' state.
Create a yaml file nginx-deployment-3-resource.yaml
to deploy a Deployment
cat > /tmp/nginx-deployment-3-resource.yaml<< EOF
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment-3-resource
labels:
app: nginx
spec:
replicas: 1
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:stable-alpine
ports:
- containerPort: 80
resources:
limits:
"akri.sh/akri-debug-echo-foo": "3"
EOF
Deploy the deployment and check the pod status, it should be in Pending
state due to insufficient resources.
$ kubectl apply -f /tmp/nginx-deployment-3-resource.yaml
deployment.apps/nginx-deployment-3-resource created
$ kubectl get nodes,akric,akrii,pods
NAME STATUS ROLES AGE VERSION
node/kube-01 Ready control-plane 22d v1.26.1
node/kube-02 Ready <none> 22d v1.26.1
node/kube-03 Ready <none> 22d v1.26.1
NAME CAPACITY AGE
configuration.akri.sh/akri-debug-echo-foo 5 18m
NAME CONFIG SHARED NODES AGE
instance.akri.sh/akri-debug-echo-foo-8120fe akri-debug-echo-foo true ["kube-02","kube-03"] 18m
instance.akri.sh/akri-debug-echo-foo-a19705 akri-debug-echo-foo true ["kube-02","kube-03"] 18m
NAME READY STATUS RESTARTS AGE
pod/akri-agent-daemonset-gk29m 1/1 Running 0 18m
pod/akri-agent-daemonset-rzc88 1/1 Running 0 18m
pod/akri-controller-deployment-7d786778cf-9mcfh 1/1 Running 0 18m
pod/akri-debug-echo-discovery-daemonset-4dhl2 1/1 Running 0 18m
pod/akri-debug-echo-discovery-daemonset-jd677 1/1 Running 0 18m
pod/akri-webhook-configuration-6b4f74c4cc-zkszc 1/1 Running 0 18m
pod/kube-02-akri-debug-echo-foo-8120fe-pod 1/1 Running 0 18m
pod/kube-02-akri-debug-echo-foo-a19705-pod 1/1 Running 0 18m
pod/kube-03-akri-debug-echo-foo-8120fe-pod 1/1 Running 0 18m
pod/kube-03-akri-debug-echo-foo-a19705-pod 1/1 Running 0 18m
pod/nginx-deployment-3-resource-5bc97ffc44-r5rtd 0/1 Pending 0 4s
$ kubectl describe pod nginx-deployment-3-resource-5bc97ffc44-r5rtd
Name: nginx-deployment-3-resource-5bc97ffc44-r5rtd
Namespace: default
Priority: 0
...
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Warning FailedScheduling 22s default-scheduler 0/3 nodes are available: 1 node(s) had untolerated taint {node-role.kubernetes.io/control-plane: }, 2 Insufficient akri.sh/akri-debug-echo-foo. preemption: 0/3 nodes are available: 1 Preemption is not helpful for scheduling, 2 No preemption victims found for incoming pod..
Delete the deployment
kubectl delete -f /tmp/nginx-deployment-3-resource.yaml
Now deploy a deployment that requests 1 configuration-level resources in a container, the deployment should succeed.
Copy the yaml and save it to a file named nginx-deployment-1-resource.yaml
cat > /tmp/nginx-deployment-1-resource.yaml<< EOF
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment-1-resource
labels:
app: nginx
spec:
replicas: 1
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:stable-alpine
ports:
- containerPort: 80
resources:
limits:
"akri.sh/akri-debug-echo-foo": "1"
EOF
Deploy the deployment and check the pod status, the pod should be in Running
state.
$ kubectl apply -f /tmp/nginx-deployment-1-resource.yaml
deployment.apps/nginx-deployment-1-resource created
$ kubectl get nodes,akric,akrii,pods
NAME STATUS ROLES AGE VERSION
node/kube-01 Ready control-plane 22d v1.26.1
node/kube-02 Ready <none> 22d v1.26.1
node/kube-03 Ready <none> 22d v1.26.1
NAME CAPACITY AGE
configuration.akri.sh/akri-debug-echo-foo 5 27m
NAME CONFIG SHARED NODES AGE
instance.akri.sh/akri-debug-echo-foo-8120fe akri-debug-echo-foo true ["kube-02","kube-03"] 27m
instance.akri.sh/akri-debug-echo-foo-a19705 akri-debug-echo-foo true ["kube-02","kube-03"] 27m
NAME READY STATUS RESTARTS AGE
pod/akri-agent-daemonset-gk29m 1/1 Running 0 27m
pod/akri-agent-daemonset-rzc88 1/1 Running 0 27m
pod/akri-controller-deployment-7d786778cf-9mcfh 1/1 Running 0 27m
pod/akri-debug-echo-discovery-daemonset-4dhl2 1/1 Running 0 27m
pod/akri-debug-echo-discovery-daemonset-jd677 1/1 Running 0 27m
pod/akri-webhook-configuration-6b4f74c4cc-zkszc 1/1 Running 0 27m
pod/kube-02-akri-debug-echo-foo-8120fe-pod 1/1 Running 0 27m
pod/kube-02-akri-debug-echo-foo-a19705-pod 1/1 Running 0 27m
pod/kube-03-akri-debug-echo-foo-8120fe-pod 1/1 Running 0 27m
pod/kube-03-akri-debug-echo-foo-a19705-pod 1/1 Running 0 27m
pod/nginx-deployment-1-resource-6844748f48-zpfb7 1/1 Running 0 9s
Configuration-level resources and instance-level resources share the same set of device usage slots, so if in the Configuration the capacity is 5 and 2 devices are discovered, then the total number of virtual devices can be used is 5 * 2 = 10
. Total allocated configuration-level resource + allocated instance-level resource cannot exceed 10. If the requested resource count exceeds the available resource count, the pod will be pending waiting for resource becomes available.
We can check the resource usage on each node to see the Configuration-level and Instance-level resource number. In the example below, the Configuration-level resource is allocated on node kube-03
and
it's mapped to Instance akri-debug-echo-foo-8120fe
, so the Allocatable resource for akri-debug-echo-foo-8120fe
is 3 (5 - 1 Instance-level - 1 Configuration-level). Compare it to the allocatable resource number of Instance akri-debug-echo-foo-a19705
(4, 5 - 1 Instance-level) that only 1 resource claimed at Instance-level.
$ kubectl describe node kube-02
Name: kube-02
...
Capacity:
akri.sh/akri-debug-echo-foo: 2
akri.sh/akri-debug-echo-foo-8120fe: 5
akri.sh/akri-debug-echo-foo-a19705: 5
...
Allocatable:
akri.sh/akri-debug-echo-foo: 2
akri.sh/akri-debug-echo-foo-8120fe: 3
akri.sh/akri-debug-echo-foo-a19705: 4
Allocated resources:
...
akri.sh/akri-debug-echo-foo 0 0
akri.sh/akri-debug-echo-foo-8120fe 1 1
akri.sh/akri-debug-echo-foo-a19705 1 1
$ kubectl describe node kube-03
Name: kube-03
...
Capacity:
akri.sh/akri-debug-echo-foo: 3
akri.sh/akri-debug-echo-foo-8120fe: 5
akri.sh/akri-debug-echo-foo-a19705: 5
...
Allocatable:
akri.sh/akri-debug-echo-foo: 3
akri.sh/akri-debug-echo-foo-8120fe: 3
akri.sh/akri-debug-echo-foo-a19705: 4
...
Allocated resources:
akri.sh/akri-debug-echo-foo 1 1
akri.sh/akri-debug-echo-foo-8120fe 1 1
akri.sh/akri-debug-echo-foo-a19705 1 1
...
Delete deployment and Akri installation to clean up the system.
kubectl delete -f /tmp/nginx-deployment-1-resource.yaml
helm delete akri-debug-echo
kubectl delete crd configurations.akri.sh
kubectl delete crd instances.akri.sh
Make sure you have at least one Onvif camera that is reachable so Onvif discovery handler can discovery your Onvif camera. To test accessing Onvif with credentials, make sure your Onvif camera is authentication-enabled. Write down the username and password, they are required in the test flow.
First use the following helm chart to deploy an Akri Configuration that uses ONVIF discovery handler and see if your camera is discovered.
# add akri helm charts repo
helm repo add akri-helm-charts https://project-akri.github.io/akri/
# ensure helm repos are up-to-date
helm repo update
Set up the Kubernetes distribution being used, here we use 'k8s', make sure to replace it with a value that matches the Kubernetes distribution you used
export AKRI_HELM_CRICTL_CONFIGURATION="--set kubernetesDistro=k8s"
Install an Akri configuration named akri-onvif
that uses debug echo discovery handler
helm install akri akri-helm-charts/akri-dev \
$AKRI_HELM_CRICTL_CONFIGURATION \
--set onvif.discovery.enabled=true \
--set onvif.configuration.name=akri-onvif \
--set onvif.configuration.enabled=true \
--set onvif.configuration.capacity=3 \
--set onvif.configuration.brokerPod.image.repository="nginx" \
--set onvif.configuration.brokerPod.image.tag="stable-alpine"
Here is the result of running the installation command above on a cluster with 1 control plane and 2 work nodes. There is one Onvif camera connects to the network, thus 1 pods running on each node.
$ kubectl get nodes,akric,akrii,pods
NAME STATUS ROLES AGE VERSION
node/kube-01 Ready control-plane 22d v1.26.1
node/kube-02 Ready <none> 22d v1.26.1
node/kube-03 Ready <none> 22d v1.26.1
NAME CAPACITY AGE
configuration.akri.sh/akri-onvif 3 62s
NAME CONFIG SHARED NODES AGE
instance.akri.sh/akri-onvif-029957 akri-onvif true ["kube-03","kube-02"] 48s
NAME READY STATUS RESTARTS AGE
pod/akri-agent-daemonset-gnwb5 1/1 Running 0 62s
pod/akri-agent-daemonset-zn2gb 1/1 Running 0 62s
pod/akri-controller-deployment-56b9796c5-wqdwr 1/1 Running 0 62s
pod/akri-onvif-discovery-daemonset-wcp2f 1/1 Running 0 62s
pod/akri-onvif-discovery-daemonset-xml6t 1/1 Running 0 62s
pod/akri-webhook-configuration-75d9b95fbc-wqhgw 1/1 Running 0 62s
pod/kube-02-akri-onvif-029957-pod 1/1 Running 0 48s
pod/kube-03-akri-onvif-029957-pod 1/1 Running 0 48s
Dump the environment variables from the container to check the device uuid from the container's environment variables. Below is an example, the Onvif discovery handler discovers the camera and expose the device's uuid. Write down the device uuid for later use. Note that in real product scenarios, the device uuids are acquired directly from the vendors or already known before installing Akri Configuration.
$ kubectl exec -i kube-02-akri-onvif-029957-pod -- /bin/sh -c "printenv|grep ONVIF_DEVICE"
ONVIF_DEVICE_SERVICE_URL_029957=http://192.168.1.145:2020/onvif/device_service
ONVIF_DEVICE_UUID_029957=3fa1fe68-b915-4053-a3e1-ac15a21f5f91
Now we can set up the credential information to Kubernetes Secret. Replace the device uuid and the values of username/password with information of your camera.
cat > /tmp/onvif-auth-secret.yaml<< EOF
---
apiVersion: v1
kind: Secret
metadata:
name: onvif-auth-secret
type: Opaque
stringData:
device_credential_list: |+
[ "credential_list" ]
credential_list: |+
{
"3fa1fe68-b915-4053-a3e1-ac15a21f5f91" :
{
"username" : "camuser",
"password" : "HappyDay"
}
}
EOF
# add the secret to cluster
kubectl apply -f /tmp/onvif-auth-secret.yaml
Upgrade the Akri Configuration to include the secret information and the sample video broker container.
helm upgrade akri akri-helm-charts/akri-dev \
$AKRI_HELM_CRICTL_CONFIGURATION \
--set onvif.discovery.enabled=true \
--set onvif.configuration.enabled=true \
--set onvif.configuration.capacity=3 \
--set onvif.configuration.discoveryProperties[0].name=device_credential_list \
--set onvif.configuration.discoveryProperties[0].valueFrom.secretKeyRef.name=onvif-auth-secret \
--set onvif.configuration.discoveryProperties[0].valueFrom.secretKeyRef.namesapce=default \
--set onvif.configuration.discoveryProperties[0].valueFrom.secretKeyRef.key=device_credential_list \
--set onvif.configuration.discoveryProperties[0].valueFrom.secretKeyRef.optoinal=false \
--set onvif.configuration.brokerPod.image.repository="ghcr.io/project-akri/akri/onvif-video-broker" \
--set onvif.configuration.brokerPod.image.tag="latest-dev" \
--set onvif.configuration.brokerPod.image.pullPolicy="Always" \
--set onvif.configuration.brokerProperties.CREDENTIAL_DIRECTORY="/etc/credential_directory" \
--set onvif.configuration.brokerProperties.CREDENTIAL_CONFIGMAP_DIRECTORY="/etc/credential_cfgmap_directory" \
--set onvif.configuration.brokerPod.volumeMounts[0].name="credentials" \
--set onvif.configuration.brokerPod.volumeMounts[0].mountPath="/etc/credential_directory" \
--set onvif.configuration.brokerPod.volumeMounts[0].readOnly=true \
--set onvif.configuration.brokerPod.volumes[0].name="credentials" \
--set onvif.configuration.brokerPod.volumes[0].secret.secretName="onvif-auth-secret"
With the secret information, the Onvif discovery handler is able to discovery the Onvif camera and the video broker is up and running
$ kubectl get nodes,akric,akrii,pods
NAME STATUS ROLES AGE VERSION
node/kube-01 Ready control-plane 22d v1.26.1
node/kube-02 Ready <none> 22d v1.26.1
node/kube-03 Ready <none> 22d v1.26.1
NAME CAPACITY AGE
configuration.akri.sh/akri-onvif 3 18m
NAME CONFIG SHARED NODES AGE
instance.akri.sh/akri-onvif-029957 akri-onvif true ["kube-03","kube-02"] 22s
NAME READY STATUS RESTARTS AGE
pod/akri-agent-daemonset-bq494 1/1 Running 0 18m
pod/akri-agent-daemonset-c2rng 1/1 Running 0 18m
pod/akri-controller-deployment-56b9796c5-rtm5q 1/1 Running 0 18m
pod/akri-onvif-discovery-daemonset-rbgwq 1/1 Running 0 18m
pod/akri-onvif-discovery-daemonset-xwjlp 1/1 Running 0 18m
pod/akri-webhook-configuration-75d9b95fbc-cr6bc 1/1 Running 0 18m
pod/kube-02-akri-onvif-029957-pod 1/1 Running 0 22s
pod/kube-03-akri-onvif-029957-pod 1/1 Running 0 22s
# dump the logs from sample video broker
$ kubectl logs kube-02-akri-onvif-029957-pod
[Akri] ONVIF request http://192.168.1.145:2020/onvif/device_service http://www.onvif.org/ver10/device/wsdl/GetService
[Akri] ONVIF media url http://192.168.1.145:2020/onvif/service
[Akri] ONVIF request http://192.168.1.145:2020/onvif/service http://www.onvif.org/ver10/media/wsdl/GetProfiles
[Akri] ONVIF profile list contains: profile_1
[Akri] ONVIF profile list contains: profile_2
[Akri] ONVIF profile list profile_1
[Akri] ONVIF request http://192.168.1.145:2020/onvif/service http://www.onvif.org/ver10/media/wsdl/GetStreamUri
[Akri] ONVIF streaming uri list contains: rtsp://192.168.1.145:554/stream1
[Akri] ONVIF streaming uri rtsp://192.168.1.145:554/stream1
[VideoProcessor] Processing RTSP stream: rtsp://----:----@192.168.1.145:554/stream1
info: Microsoft.Hosting.Lifetime[0]
Now listening on: http://[::]:8083
info: Microsoft.Hosting.Lifetime[0]
Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
Hosting environment: Production
info: Microsoft.Hosting.Lifetime[0]
Content root path: /app
Ready True
Adding frame from rtsp://----:----@192.168.1.145:554/stream1, Q size: 1, frame size: 862986
Adding frame from rtsp://----:----@192.168.1.145:554/stream1, Q size: 2, frame size: 865793
Adding frame from rtsp://----:----@192.168.1.145:554/stream1, Q size: 2, frame size: 868048
Adding frame from rtsp://----:----@192.168.1.145:554/stream1, Q size: 2, frame size: 869655
Adding frame from rtsp://----:----@192.168.1.145:554/stream1, Q size: 2, frame size: 871353
Deploy the sample video streaming application Instructions described from the step 4 of camera demo
Deploy a video streaming web application that points to both the Configuration and Instance level services that were automatically created by Akri.
Copy and paste the contents into a file and save it as akri-video-streaming-app.yaml
cat > /tmp/akri-video-streaming-app.yaml<< EOF
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: akri-video-streaming-app
spec:
replicas: 1
selector:
matchLabels:
app: akri-video-streaming-app
template:
metadata:
labels:
app: akri-video-streaming-app
spec:
serviceAccountName: akri-video-streaming-app-sa
containers:
- name: akri-video-streaming-app
image: ghcr.io/project-akri/akri/video-streaming-app:latest-dev
imagePullPolicy: Always
securityContext:
runAsUser: 1000
allowPrivilegeEscalation: false
runAsNonRoot: true
readOnlyRootFilesystem: true
capabilities:
drop: ["ALL"]
env:
# Streamer works in two modes; either specify the following commented
# block of env vars to explicitly target cameras (update the <id>s for
# your specific cameras) or
# specify a Akri configuration name to pick up cameras automatically
# - name: CAMERAS_SOURCE_SVC
# value: "akri-udev-video-svc"
# - name: CAMERA_COUNT
# value: "2"
# - name: CAMERA1_SOURCE_SVC
# value: "akri-udev-video-<id>-svc"
# - name: CAMERA2_SOURCE_SVC
# value: "akri-udev-video-<id>-svc"
- name: CONFIGURATION_NAME
value: akri-onvif
---
apiVersion: v1
kind: Service
metadata:
name: akri-video-streaming-app
namespace: default
labels:
app: akri-video-streaming-app
spec:
selector:
app: akri-video-streaming-app
ports:
- name: http
port: 80
targetPort: 5000
type: NodePort
---
apiVersion: v1
kind: ServiceAccount
metadata:
name: akri-video-streaming-app-sa
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: akri-video-streaming-app-role
rules:
- apiGroups: [""]
resources: ["services"]
verbs: ["list"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: akri-video-streaming-app-binding
roleRef:
apiGroup: ""
kind: ClusterRole
name: akri-video-streaming-app-role
subjects:
- kind: ServiceAccount
name: akri-video-streaming-app-sa
namespace: default
EOF
Deploy the video stream app
kubectl apply -f /tmp/akri-video-streaming-app.yaml
Determine which port the service is running on. Save this port number for the next step:
kubectl get service/akri-video-streaming-app --output=jsonpath='{.spec.ports[?(@.name=="http")].nodePort}' && echo
SSH port forwarding can be used to access the streaming application. In a new terminal, enter your ssh command to to access your machine followed by the port forwarding request. The following command will use port 50000 on the host. Feel free to change it if it is not available. Be sure to replace <streaming-app-port>
with the port number outputted in the previous step.
ssh someuser@<machine IP address> -L 50000:localhost:<streaming-app-port>
Navigate to http://localhost:50000/ using browser. The large feed points to Configuration level service, while the bottom feed points to the service for each Instance or camera.
Close the page http://localhost:50000/ from the browser
Delete the sample streaming application resources
kubectl delete -f /tmp/akri-video-streaming-app.yaml
Delete the Secret information
kubectl delete -f /tmp/onvif-auth-secret.yaml
Delete deployment and Akri installation to clean up the system.
helm delete akri
kubectl delete crd configurations.akri.sh
kubectl delete crd instances.akri.sh
It would be great to walk through the documentation with the bug bash and note which changes to docs we would need to make. There are some pending PRs on the documentations as well that go with the release.
Please write the environment you used (Kubernetes distro/version and VM), the scenarios you tested, and whether it was a success or had issues.
Environment | Scenario | Success/Issue |
---|---|---|