Try   HackMD

Simple OpenNMS Environment using Elasticsearch for Flows

This lab starts an OpenNMS instance and a 3 node Elasticsearch cluster in the cloud, for learning purposes.

To monitor a network, it is advised to enable ActiveMQ or Kafka and use Minions. For simplicity, the embedded AMQ will be enabled, and a simple minion will be started to test flows.

Requirements

The scripts used through this tutorial use envsubst, make sure to have it installed.

Make sure to log into Azure using az login prior creating the VM.

If you have a restricted account in Azure, make sure you have the Network Contributor role and the Virtual Machine Contributor role associated with your Azure AD account for the resource group on which you would like to create the VM. Of course, Owner or Contributor at resource group level are welcome.

Create common Environment Variables

export RG_NAME="OpenNMS" # Change it to use a shared one export LOCATION="eastus" # Azure Region export VNET_CIDR="13.0.0.0/16" export VNET_SUBNET="13.0.1.0/24" export VNET_NAME="$USER-vnet" export VNET_SUBNET_NAME="subnet1" export ONMS_HEAP="4096" # Expressed in MB and must fit ONMS_VM_SIZE export ONMS_VM_SIZE="Standard_D2s_v3" # 2 VCPU, 8 GB of RAM export ONMS_VM_NAME="$USER-opennms" export ELASTIC_VERSION="7.6.2" # Must match OpenNMS Drift Plugin export ELASTIC_VM_SIZE="Standard_D2s_v3" # 2 VCPU, 8 GB of RAM export ELASTIC_HEAP="4g" # Must fit ELASTIC_VM_SIZE export ELASTIC_SHARDS="9" export ELASTIC_REPLICAS="2" # Must be less than number of data nodes export KIBANA_VM_NAME="$USER-kibana" export KIBANA_VM_SIZE="Standard_D2s_v3" # 2 VCPU, 8 GB of RAM

Feel free to change the content if needed, but if you're planing to change the VNet settings, make sure to adjust the VM creation commands.

We're going to leverage the Azure DNS services to avoid the need to remember and using Public IP addresses.

In Azure, the default public DNS follow the same pattern:

<vm-name>.<location>.cloudapp.azure.com

To make the VMs FQDN unique, we're going to add the username to the VM name. For instance, the OpenNMS FQDN would be:

agalue-opennms.eastus.cloudapp.azure.com

The above is what we can use to access the VM via SSH and to configure Minions.

Create the Azure Resource Group

This is a necessary step, as every resource in Azure must belong to a resource group and a location.

However, you can omit the following command and use an existing one if you prefer. In that case, make sure to adjust the environment variable RG_NAME so the subsequent commands will target the correct group.

az group create -n $RG_NAME -l $LOCATION

Create the Virtual Network

az network vnet create -g $RG_NAME \ --name $VNET_NAME \ --address-prefix $VNET_CIDR \ --subnet-name $VNET_SUBNET_NAME \ --subnet-prefix $VNET_SUBNET

Create the Elasticsearch cluster

Create the cloud-init YAML file as /tmp/elasticsearch-template.yaml with the following content to create an Ubuntu VM with Elasticsearch 7.6.2, OpenJDK 11 and the OpenNMS Elasticsearch Plugin that matches the Elasticsearch version (which is a mandatory requirement).

For simplicity, each instance will have all roles (i.e., master, data, coordinator). It is advised to have a 3-node cluster for masters, a 2-node cluster for coordinators, and an n-node cluster for data in production. That requires defining the roles on each case, but that falls outside the scope of this guide.

#cloud-config package_upgrade: false write_files: - owner: root:root path: /etc/systemd/system/elasticsearch.service.d/override.conf content: | [Service] LimitMEMLOCK=infinity - owner: root:root permissions: '0750' path: /etc/elasticsearch/configure.sh content: | #!/bin/bash if [ -f "/etc/elasticsearch/.configured" ]; then echo "Elasticsearch node already configured." exit fi cat <<EOF >>/etc/elasticsearch/elasticsearch.yml # Basic Configuration cluster.name: OpenNMS node.name: $(hostname) network.host: $(ifconfig eth0 | grep 'inet[^6]' | awk '{print $2}') xpack.monitoring.collection.enabled: true bootstrap.memory_lock: true search.max_buckets: 50000 discovery.seed_hosts: ["$USER-elastic1"] cluster.initial_master_nodes: $USER-elastic1,$USER-elastic2,$USER-elastic3 EOF sed -i -r 's/^(-Xm[xs])1g/\1$ELASTIC_HEAP/' /etc/elasticsearch/jvm.options systemctl --now enable elasticsearch touch /etc/elasticsearch/.configured packages: - net-tools - apt-transport-https - openjdk-11-jre-headless runcmd: - wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-$ELASTIC_VERSION-amd64.deb - dpkg -i elasticsearch-$ELASTIC_VERSION-amd64.deb - wget https://github.com/OpenNMS/elasticsearch-drift-plugin/releases/download/v$ELASTIC_VERSION/elasticsearch-drift-plugin_$ELASTIC_VERSION-1_all.deb - dpkg -i elasticsearch-drift-plugin_$ELASTIC_VERSION-1_all.deb - /etc/elasticsearch/configure.sh

If you want to start a single-node cluster, make sure to update the configure.sh script from the above template to include:

discovery.type: single-node
#discovery.seed_hosts: ...
#cluster.initial_master_nodes: ...

Create the Elasticsearch cluster:

envsubst < /tmp/elasticsearch-template.yaml > /tmp/elasticsearch.yaml for i in {1..3}; do VM_NAME="$USER-elastic$i" echo "Creating VM $VM_NAME..." az vm create --resource-group $RG_NAME --name $VM_NAME \ --size $ELASTIC_VM_SIZE \ --image UbuntuLTS \ --admin-username $USER \ --ssh-key-values ~/.ssh/id_rsa.pub \ --vnet-name $VNET_NAME \ --subnet $VNET_SUBNET_NAME \ --public-ip-address "" \ --custom-data /tmp/elasticsearch.yaml \ --no-wait done

There is no need to open ports, as any VM can reach any other VM through any port by default, and the cluster won't be exposed to the internet.

Create a VM for Kibana

This is an optional but useful step as Kibana can not only help to visualize data in Elasticsearch but also helps to check the health of the cluster. It has to run in Azure to avoid exposing Elasticsearch to the Internet.

Create the template with the following content and save it at /tmp/kibana-template.yaml:

#cloud-config package_upgrade: false write_files: - owner: root:root permissions: '0750' path: /etc/kibana/configure.sh content: | #!/bin/bash cat <<EOF >>/etc/kibana/kibana.yml # Basic Configuration server.host: $(ifconfig eth0 | grep 'inet[^6]' | awk '{print $2}') server.name: $(hostname) elasticsearch.hosts: ["http://$USER-elastic1:9200"] EOF systemctl --now enable kibana packages: - net-tools - apt-transport-https runcmd: - wget https://artifacts.elastic.co/downloads/kibana/kibana-$ELASTIC_VERSION-amd64.deb - dpkg -i kibana-$ELASTIC_VERSION-amd64.deb - /etc/kibana/configure.sh

Create the VM:

envsubst < /tmp/kibana-template.yaml > kibana.yaml az vm create --resource-group $RG_NAME --name $KIBANA_VM_NAME \ --size $KIBANA_VM_SIZE \ --image UbuntuLTS \ --admin-username $USER \ --ssh-key-values ~/.ssh/id_rsa.pub \ --vnet-name $VNET_NAME \ --subnet $VNET_SUBNET_NAME \ --public-ip-address-dns-name $KIBANA_VM_NAME \ --custom-data /tmp/kibana.yaml \ --output table az vm open-port -g $RG_NAME -n $KIBANA_VM_NAME --port 5601 --priority 100 -o table

Create a VM for OpenNMS

Create a cloud-init script to deploy OpenNMS in Ubuntu with the following content and store it at /tmp/opennms-template.yaml:

#cloud-config package_upgrade: true write_files: - owner: root:root path: /etc/opennms-overlay/opennms.properties.d/rrd.properties content: | org.opennms.rrd.storeByGroup=true org.opennms.rrd.storeByForeignSource=true org.opennms.rrd.strategyClass=org.opennms.netmgt.rrd.rrdtool.MultithreadedJniRrdStrategy org.opennms.rrd.interfaceJar=/usr/share/java/jrrd2.jar opennms.library.jrrd2=/usr/lib/jni/libjrrd2.so - owner: root:root path: /etc/opennms-overlay/org.opennms.features.flows.persistence.elastic.cfg content: | elasticUrl=http://$USER-elastic1:9200 globalElasticUser=elastic globalElasticPassword=elastic connTimeout=30000 readTimeout=300000 retries=1 elasticIndexStrategy=daily # The following settings should be consistent with your ES cluster settings.index.number_of_shards=$ELASTIC_SHARDS settings.index.number_of_replicas=$ELASTIC_REPLICAS apt: preserve_sources_list: true sources: opennms: source: deb https://debian.opennms.org stable main packages: - opennms - opennms-webapp-hawtio - opennms-helm - jrrd2 bootcmd: - curl -s https://debian.opennms.org/OPENNMS-GPG-KEY | apt-key add - runcmd: # Configure PostgreSQL - systemctl --now enable postgresql - sudo -u postgres createuser opennms - sudo -u postgres psql -c "ALTER USER postgres WITH PASSWORD 'postgres';" - sudo -u postgres psql -c "ALTER USER opennms WITH PASSWORD 'opennms';" - sed -r -i 's/password=""/password="postgres"/' /etc/opennms/opennms-datasources.xml # Configure ActiveMQ - sed -r -i '/0.0.0.0:61616/s/([<][!]--|--[>])//g' /etc/opennms/opennms-activemq.xml # Enable Syslogd - sed -r -i '/enabled="false"/{$!{N;s/ enabled="false"[>]\n(.*OpenNMS:Name=Syslogd.*)/>\n\1/}}' /etc/opennms/service-configuration.xml # Initialize and start OpenNMS - rsync -avr /etc/opennms-overlay/ /etc/opennms/ - /usr/share/opennms/bin/runjava -s - /usr/share/opennms/bin/install -dis - echo 'JAVA_HEAP_SIZE=$ONMS_HEAP' > /etc/opennms/opennms.conf - systemctl --now enable opennms - systemctl --now enable grafana-server

If you're using a single-node Elasticsearch cluster, make sure to set settings.index.number_of_replicas=0, and perhaps settings.index.number_of_shards=1.

The above installs the latest OpenJDK 11, the latest PostgreSQL, and the latest OpenNMS Horizon. I added the most basic configuration for PostgreSQL to work with authentication. The embedded ActiveMQ is enabled, as well as Syslogd.

Create an Ubuntu VM for OpenNMS:

envsubst < /tmp/opennms-template.yaml > opennms.yaml az vm create --resource-group $RG_NAME --name $ONMS_VM_NAME \ --size $ONMS_VM_SIZE \ --image UbuntuLTS \ --admin-username $USER \ --ssh-key-values ~/.ssh/id_rsa.pub \ --vnet-name $VNET_NAME \ --subnet $VNET_SUBNET_NAME \ --public-ip-address-dns-name $ONMS_VM_NAME \ --custom-data /tmp/opennms.yaml \ --output table az vm open-port -g $RG_NAME -n $ONMS_VM_NAME --port 8980 --priority 200 -o table az vm open-port -g $RG_NAME -n $ONMS_VM_NAME --port 61616 --priority 300 -o table az vm open-port -g $RG_NAME -n $ONMS_VM_NAME --port 3000 --priority 400 -o table

Keep in mind that the cloud-init process starts once the VM is running, meaning you should wait about 5 minutes after the az vm create is finished to see OpenNMS up and running.

In case there is a problem, SSH into the VM using the public IP and the provided credentials and check /var/log/cloud-init-output.log to verify the progress and the status of the cloud-init execution.

You can SSH the Cassandra VMs from the OpenNMS VM, as those don't have public IP addresses.

Create a Minion VM on your network

Create the following cloud-init template to create a Minion (assuming the embedded ActiveMQ within OpenNMS is in place) and save it as /tmp/minion-template.yaml:

#cloud-config package_upgrade: true write_files: - owner: root:root path: /etc/minion-overlay/org.opennms.minion.controller.cfg content: | location=$MINION_LOCATION id=$MINION_ID http-url=http://$ONMS_FQDN:8980/opennms broker-url=failover:tcp://$ONMS_FQDN:61616 - owner: root:root path: /etc/minion-overlay/org.opennms.features.telemetry.listeners-udp-9999.cfg content: | name = Flows class-name = org.opennms.netmgt.telemetry.listeners.UdpListener parameters.port = 9999 parsers.0.name = Netflow-5 parsers.0.class-name = org.opennms.netmgt.telemetry.protocols.netflow.parser.Netflow5UdpParser parsers.0.parameters.dnsLookupsEnabled=false parsers.1.name = Netflow-9 parsers.1.class-name = org.opennms.netmgt.telemetry.protocols.netflow.parser.Netflow9UdpParser parsers.1.parameters.dnsLookupsEnabled=false parsers.2.name = SFlow parsers.2.class-name = org.opennms.netmgt.telemetry.protocols.sflow.parser.SFlowUdpParser parsers.2.parameters.dnsLookupsEnabled=false apt: preserve_sources_list: true sources: opennms: source: deb https://debian.opennms.org stable main packages: - opennms-minion bootcmd: - curl -s https://debian.opennms.org/OPENNMS-GPG-KEY | apt-key add - runcmd: - rsync -avr /etc/minion-overlay/ /etc/minion/ - rm -f /etc/minion/org.opennms.features.telemetry.listeners.flows.cfg - sed -i -r 's/# export JAVA_MIN_MEM=.*/export JAVA_MIN_MEM="$MINION_HEAP_SIZE"/' /etc/default/minion - sed -i -r 's/# export JAVA_MAX_MEM=.*/export JAVA_MAX_MEM="$MINION_HEAP_SIZE"/' /etc/default/minion - /usr/share/minion/bin/scvcli set opennms.http admin admin - /usr/share/minion/bin/scvcli set opennms.broker admin admin - systemctl --now enable minion

Note the usage of environment variables within the YAML template. We will substitute them before creating the VM.

Then, create the runtime template:

export MINION_ID="minion01" export MINION_LOCATION="Durham" export MINION_HEAP_SIZE="1g" export ONMS_FQDN="$ONMS_VM_NAME.$LOCATION.cloudapp.azure.com" envsubst < /tmp/minion-template.yaml > /tmp/$MINION_ID.yaml

Then, start the new Minion via multipass with one core and 2GB of RAM:

multipass launch -c 1 -m 2G -n $MINION_ID --cloud-init /tmp/$MINION_ID.yaml

The content you add for parsers.X.name will be part of the Sink API's Telemetry Topic. That has to match the Queue name for the Adapter in telemetryd-configuration.xml in OpenNMS, or the name attribute inside the org.opennms.features.telemetry.adapters-XXXX.cfg file when using Sentinel.

Monitor a flow-capable machine

As having a flow-capable router can be complicated, we're going to use udpgen. This tool can serve to test flows and send Syslog and SNMP Traps via Minion to the OpenNMS server running in Azure.

The machine that will be running udpgen must be part of the OpenNMS inventory. Assuming the machine IP is 192.168.0.40, do the following from the OpenNMS instance:

/usr/share/opennms/bin/provision.pl requisition add Test /usr/share/opennms/bin/provision.pl node add Test srv01 srv01 /usr/share/opennms/bin/provision.pl node set Test srv01 location Durham /usr/share/opennms/bin/provision.pl interface add Test srv01 192.168.0.40 /usr/share/opennms/bin/provision.pl interface set Test srv01 192.168.0.40 snmp-primary P /usr/share/opennms/bin/provision.pl requisition import Test

Then, find the IP of the Minion using multipass list, then execute the following from the machine added as a node above (the examples assumes the IP of the Minion is 192.168.75.16):

To send SNMP Traps:

udpgen -h 192.168.75.16 -x snmp -r 1 -p 1162

To send Syslog Messages:

udpgen -h 192.168.75.16 -x syslog -r 1 -p 1514

To send Netflow 5 Packets:

udpgen -h 192.168.75.16 -x netflow5 -r 1 -p 9999

The C++ version of udpgen only works on Linux. If you're on MacOS, you can use the Go version of it. Unfortunately, Windows is not supported.

Clean Up

When you're done, make sure to delete the cloud resources.

If you created the resource group for this exercise, you could remove all the resources with the following command:

az group delete -g $RG_NAME

If you're using an existing resource group that you cannot remove, make sure only to remove all the resources created in this tutorial. All of them should be easily identified as they will contain the username and the VM name as part of the resource name. The easiest way is to use the Azure Portal for this operation. Alternatively,

IDS=($(az resource list \ --resource-group $RG_NAME \ --query "[?contains(name,'$USER-') && type!='Microsoft.Compute/disks']".id \ --output tsv | tr '\n' ' ')) for id in "${IDS[@]}"; do echo "Removing $id" az resource delete --ids "$id" --verbose done DISKS=($(az resource list \ --resource-group $RG_NAME \ --query "[?contains(name,'$USER-') && type=='Microsoft.Compute/disks']".id \ --output tsv | tr '\n' ' ')) for id in "${DISKS[@]}"; do echo "Removing $id" az resource delete --ids "$id" --verbose done

The reason to have two sets of deletion groups is that, by default, the list contains disks initially, which cannot be removed before the VMs. For this reason, we exclude the disks on the first set, and then we remove the disks.

Then clean the local resources:

multipass delete $MINION_ID1 multipass purge