--- disqus: abhyas29 --- # Trigonometry [TOC] ###### tags: `Mathematics` [All Mathematics Formula by Abhyas here](/@abhyas/maths_formula) Please see [README](https://hackmd.io/@abhyas/maths_formula#README) if this is the first time you are here. [Basic Geometry notes here](/@abhyas/geometry) ## From Pythgorous Theorem $H^2=B^2+P^2$ $\sin^2\theta+\cos^2\theta=1$ $\csc^2\theta-\cot^2\theta=1$ $\sec^2\theta-\tan^2\theta=1$ $\sin^4\theta+\cos^4\theta=1-2\sin^2\theta\cos^2\theta$ $\sin^4\theta-\cos^4\theta=\sin^2\theta-\cos^2\theta$ $\sin^6\theta+\cos^6\theta=1-3\sin^2\theta\cos^2\theta$ $(\sin\theta\pm\cos\theta)^2=1\pm\sin2\theta$ ## Circular Function ![](https://i.imgur.com/EnNpCiI.png) 360, 720, 1080, 1440, 1800 ### nPI+-X <small>_Because both $\sin$ and $\cos$ negaive in IV quadrent, so same behaviour. $\tan$ will be positive._</small> $\sin(n\pi+\theta)=(-1)^n\sin\theta$ $\cos(n\pi+\theta)=(-1)^ncos\theta$ $\tan(n\pi+\theta)=\tan\theta$ <small>_Because $\sin$ positive in I so need odd multiples of $\pi$ $\tan$ is negative in II and IV. $\cos$ only positive in IV so need even multiple of $\pi$_</small> $\sin(n\pi-\theta)=(-1)^{n-1}\sin\theta$ $\cos(n\pi-\theta)=(-1)^ncos\theta$ $\tan(n\pi-\theta)=-\tan\theta$ ### nPI $\sin(n\pi)=0$ <small>_because perpendicular is 0_</small> $\cos(n\pi)=(-1)^n$ <small>_because base eighter left or right of y axis_</small> $\tan(n\pi)=0$ <small>_because perpendicular is 0_</small> ### -x <small>_Because only $\cos$ is positive in IV_</small> $sin(-\theta)=-\sin\theta$ $cos(-\theta)=\cos\theta$ $tan(-\theta)=-\tan\theta$ ### Sum and difference Identities (A+B) $\sin(A+B)=\sin A\cos B+\cos A\sin B$ $\sin(A-B)=\sin A\cos B - \cos A \sin B$ $\cos(A+B) = \cos A \cos B - \sin A \sin B$ $\cos(A-B)=\cos A \cos B + \sin A \sin B$ $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ $\tan(A-B)= \frac{\tan A - \tan B}{1 + \tan A \tan B}$ $\cot(A+B) = \frac{\cot B \cot A - 1}{\cot B + cot A}$ $\cot(A - B) = \frac{\cot B \cot A +1}{\cot B - \cot A}$ ### Product of (A+B) and (A-B) $\sin(A+B)\sin(A-B) = \sin^2A-\sin^2B$ $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad=\cos^2B-cos^2A$ $cos(A+B)cos(A-B)=\cos^2A-sin^2B$ $\tan(A+B)\tan(A-B)=\frac{\tan^2A-\tan^2B}{1-\tan^2A\tan^2B}$ ### Double Angle Identities 2A $\sin2\theta=2\sin\theta\cos\theta$ $\quad\quad\,\,\,\,=\frac{2\tan A}{1+\tan^2A}$ $\cos2\theta=\cos^2\theta-\sin^2\theta$ $\quad\quad\,\,\,\,=2\cos^2\theta-1$ $\quad\quad\,\,\,\,=1-2\sin^2\theta$ $\quad\quad\,\,\,\,=\frac{1-\tan^2 A}{1+\tan^2A}$ $\tan2\theta=\frac{2\tan\theta}{1-\tan^2\theta}$ $\tan A + cotA = \frac{1}{\sin A \cos A}$ $\quad\quad\quad\quad\quad\,\,\,\,\,=\frac{2}{\sin2A}$ $\quad\quad\quad\quad\quad\,\,\,\,\,=2\csc2A$ ### Triple Angle Identities 3A $\sin3A=3\sin A -4\sin^3A$ $\cos3A=4\cos^3A - 3 \cos A$ $\tan3A = \frac{3\tan A - tan^3 A}{1 - 3 \tan^2A}$ ### Half Angle Identities X/2 $\sin\frac{x}{2}=\pm\sqrt\frac{1-\cos x}{2}$ $\cos\frac{x}{2}=\pm\sqrt\frac{1+\cos x}{2}$ $\tan\frac{x}{2}=\sqrt\frac{1-\cos x }{1 + \cos x}$ ### C-D Formula $\sin C + \sin D = 2\sin\frac{C+D}{2}\cos\frac{C-D}{2}$ $\sin C - \sin D = 2\cos\frac{C+D}{2}\sin\frac{C-D}{2}$ $\cos C + \cos D = 2\cos\frac{C+D}{2}\cos\frac{C-D}{2}$ $\cos C - \cos D = -2\sin\frac{C+D}{2}\sin\frac{C-D}{2}$ ### Value of common angles $\sin15^\circ=\frac{\sqrt3-1}{2\sqrt2}=\cos75^\circ$ $\cos15^\circ=\frac{\sqrt3+1}{2\sqrt2}=\sin75^\circ$ $\sin18^\circ=\frac{\sqrt5-1}{4}=\cos72^\circ$ $\cos18=\frac{\sqrt{10+2\sqrt5}}{4}=\sin72^\circ$ $\sin36^\circ=\frac{\sqrt{10-2\sqrt5}}{4}=\cos54^\circ$ $\cos36^\circ=\frac{\sqrt5+1}{4}=\sin54^\circ$ ### A, A+60, A-60 form $\sin A\sin(A+60^\circ)\sin(A-60^\circ)=\frac{1}{4}\sin3A$ $\cos A\cos(A+60^\circ)\cos(A-60^\circ)=\frac{1}{4}\cos3A$ $\tan A+\tan(A+60^\circ)-\tan(A-60^\circ)=\tan3A$ ### cosA cos2A cos4A... $\cos A\cos2A\cos4A=\frac{sin8A}{2^3\sin A}$ *Numerator: $\sin(2\times$ largest angle$)$ Denominator: $2$<sup>number of cos terms</sup>$\times \sin($ smallest angle$)$* ### tan Or cot and x/2 Or (Pi/2 + x) $\frac{1+\cos\theta}{\sin\theta}=\cot\frac{\theta}{2}$ $\frac{1-\cos\theta}{\sin\theta}=\tan\frac{\theta}{2}$ $\frac{1+\sin\theta}{\cos\theta}=\tan(\frac{\pi}{4}+\frac{\theta}{2})$ $\frac{1-\sin\theta}{\cos\theta}=\tan(\frac{\pi}{4}-\frac{\theta}{2})$ $\frac{1+\sin\theta}{1-\sin\theta}=\tan(\frac{\pi}{4}+\frac{\theta}{2})$ $\frac{1-\sin\theta}{1+\sin\theta}=\cot(\frac{\pi}{4}+\frac{\theta}{2})$ $\frac{1+\cos\theta}{1-\cos\theta}=\cot^2(\frac{\pi}{4}+\frac{\theta}{2})$ $\frac{1-\cos\theta}{1+\cos\theta}=\tan^2(\frac{\pi}{4}+\frac{\theta}{2})$ $\frac{\cos\theta +sin\theta}{\cos\theta-\sin\theta}=\tan(\frac{\pi}{4}+\theta)$ $\frac{\cos\theta -sin\theta}{\cos\theta+\sin\theta}=\tan(\frac{\pi}{4}-\theta)$ ### Range of Trigonometric expressoins $-1\le\sin\theta\le1$ $-1\le\cos\theta\le1$ $-\infty\le\tan\theta\le\infty$ $\sec\theta\in(-\infty,-1]\cup[1, \infty)$ $\csc\theta\in(-\infty,-1]\cup[1, \infty)$ $0\le\sin^2\theta\le1$ $0\le\cos^2\theta\le1$ $0\le\tan^2\theta\le1$ $-\sqrt{a^2+b^2} \le (a\cos \theta + b \sin \theta) \le \sqrt{a^2+b^2}$ ## Period of Trigonometic funtion Period: $\frac{2\pi}{|a|}$ $\quad\sin(ax+b)$ $\quad\cos(ax+b)$ $\quad\sec(ax+b)$ $\quad\csc(ax+b)$ Period: $\frac{\pi}{|a|}$ $\quad\tan(ax+b)$ $\quad\cot(ax+b)$ ## Trigonometric Equation ### Type 1 x = 0 $\sin x = 0 \implies x = n\pi$ $\tan x = 0 \implies x = n\pi$ $\cos x = 0 \implies x = (2n+1)\frac{\pi}{2}$ $\cot x = 0 \implies x = (2n+1)\frac{\pi}{2}$ $\sec x = 0 \implies x$ is not defined $\csc x = 0 \implies x$ is not defined ### Type 2 theta = alpha $sin\theta=\sin\alpha \implies x = n\pi+(-1)^n\alpha$ $cos\theta=\cos\alpha \implies x = 2n\pi\pm\alpha$ $tan\theta=\tan\alpha \implies x = n\pi+\alpha$ ### Type 3 squared $\sin^2\theta=\sin^2\alpha\implies x=n\pi\pm\alpha$ $\cos^2\theta=\cos^2\alpha\implies x=n\pi\pm\alpha$ $\tan^2\theta=\tan^2\alpha\implies x=n\pi\pm\alpha$ ## Properties of Triangles ![](https://i.imgur.com/dQyBkVO.png =400x) ### Basic Traingle Formulas $\angle A+ \angle B + \angle C=180^\circ$ $A+B+C=180^\circ$ Perimeter of a circle $2S=a+b+c$ Area of Triangle from Heron's Formuls $\Delta=\sqrt{S(S-a)(S-b)(S-c)}$ where $S=\frac{a+b+c}{2}$ ### Trigonometric ratios of sum of angles #### A+B = Pi-C $\because A+B=\pi-C$ $\sin(A+B)=\sin C$ $\sin(B+C)=\sin A$ $\sin(A+C)=\sin B$ $\cos(A+B)=-\cos C$ $\cos(B+C)=-\cos A$ $\cos(A+C)=-\cos B$ $\tan(A+B)=-\tan C$ $\tan(B+C)=-\tan A$ $\tan(A+C)=-\tan B$ #### (A+B)/2 = Pi/2 - C/2 $\because \frac{A+B}{2}=\frac{\pi}{2}-\frac{C}{2}$ $\sin(\frac{A+B}{2})=\cos\frac{C}{2}$ $\sin(\frac{B+C}{2})=\cos\frac{A}{2}$ $\sin(\frac{A+C}{2})=\cos\frac{B}{2}$ $\cos(\frac{A+B}{2})=\sin\frac{C}{2}$ $\cos(\frac{B+C}{2})=\sin\frac{A}{2}$ $\cos(\frac{A+C}{2})=\sin\frac{B}{2}$ $\tan(\frac{A+B}{2})=\cot\frac{C}{2}$ $\tan(\frac{B+C}{2})=\cot\frac{A}{2}$ $\tan(\frac{A+C}{2})=\cot\frac{B}{2}$ #### tan(A+B+C) In $\triangle ABC$ $\tan(A+B+C)=\frac{\tan A+\tan B + \tan C-\tan A\tan B \tan C}{1-\tan A\tan B - \tan B\tan C - \tan C \tan A}$ Now, $\tan(A+B+C) = \tan(\pi) = 0 = \frac{a}{b}$ $\implies a = 0$ We get the formula $\implies \tan A+\tan B +\tan C=\tan A\tan B\tan C$ in any $\triangle ABC$ Now, Dividing both sides by $\tan A\tan B \tan C$ $\cot B\cot C + \cot A \cot C + \cot A \cot B = 1$ ##### Similar Formula, not related to properties of triangle Now, if $A+B+C=\frac{\pi}{2}$ then, $\tan(A+B+C)=\tan(\frac{\pi}{2})=\frac{1}{0}=\frac{a}{b}$ $\implies b = 0$ $\implies 1-\tan A\tan B - \tan B\tan C - \tan C \tan A = 0$ $\implies \tan A\tan B + \tan B\tan C + \tan C \tan A = 1$ ### Identities in any Triangle #### 2A 2B 2C <small>In sin</small> $\sin2A+\sin2B+\sin2C=4\sin A\sin B\sin C$ <small>sin goes to sin</small> <small>If one is negative</small> $\sin2A+\sin2B-\sin2C=4\cos A\cos B\sin C$ <small>then negative will be sin.</small> <small>If more then one negative. Then take common -1.</small> $\sin2A-\sin2B-\sin2C$ $-1(-\sin2A+\sin2B+\sin2C)$ $=-4\sin A\cos B\cos C$ <small>In cos</small> $\cos2A+\cos2B+cos2C=-1-4\cos A\cos B\cos C$ <small>cos goes to cos with -1</small> <small>If one is negative</small> $\cos2A+\cos2B-cos2C=1-4\sin A\sin B\cos C$ then negative will be cos #### A+B+C <small>In sin</small> $\sin A+\sin B + \sin C=4\cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}$ <small>$\because \frac{\pi}{2} - \theta$ so change ratio </small> <small>If one is negative</small> $\sin A+\sin B - \sin C=4\sin\frac{A}{2}sin\frac{B}{2}cos\frac{C}{2}$ <small>Invert which are positive in +ve form</small> <small>In cos</small> $\cos A+\cos B + \cos C=1+4\sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}$ <small>$\because \frac{\pi}{2} - \theta$ so all positive and change ratio</small> <small>If one is negative</small> $\cos A+\cos B - \cos C=-1+4\cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}$ <small>-1 + Invert which are positive in +ve form</small> <small>Notice: In case of negative invert from +ve from whichever are not negative.</small> ### Relation B/w side and angle (sine formula) $\sin A \propto a$ $\sin B \propto b$ $\sin C \propto c$ Formula 1 $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$ $\therefore \sin A = ka$ $\therefore \sin B = kb$ $\therefore \sin C = kc$ Formula 2 $\frac{a}{\sin A} = \frac{b}{\sin B}=\frac{c}{\sin C}$ $\therefore a = k\sin A$ $\therefore b = k\sin B$ $\therefore c = k\sin C$ <small>Notice: Same angle and same side relation NOTE: Can only use either formula 1 or 2 in one question</small> ### cosine formula $\cos A=\frac{b^2+c^2-a^2}{2bc}$ $\cos B=\frac{a^2+c^2-b^2}{2ac}$ $\cos C=\frac{a^2+b^2-c^2}{2ab}$ <small>Notice: One angle and all three sides relation</small> ### Projection formula $a=b\cos C+ c\cos B$ $b=a\cos C+c\cos A$ $c=a\cos B+b\cos A$ <small>Two angles and all three sides relation</small> ### Area of Triangle Area $=\frac{1}{2}ac\sin B=\frac{1}{2}ab\sin C=\frac{1}{2}bc\sin A$ ### Half angle formula $\sin\frac{A}{2}=\sqrt\frac{(S-b)(S-c)}{bc}$ $\sin\frac{B}{2}=\sqrt\frac{(S-a)(S-c)}{ac}$ $\sin\frac{C}{2}=\sqrt\frac{(S-a)(S-b)}{ab}$ $\cos\frac{A}{2}=\sqrt\frac{S(S-a)}{bc}$ $\cos\frac{B}{2}=\sqrt\frac{S(S-b)}{ac}$ $\cos\frac{C}{2}=\sqrt\frac{S(S-c)}{ab}$ $\tan\frac{A}{2}=\sqrt\frac{(S-b)(S-c)}{S(S-a)}$ $\tan\frac{B}{2}=\sqrt\frac{(S-a)(S-c)}{S(S-b)}$ $\tan\frac{C}{2}=\sqrt\frac{(S-a)(S-b)}{S(S-c)}$ ### Trick | | | | | ------------ | ------------ | ------------ | | $A=30^\circ$ | $B=60^\circ$ | $C=90^\circ$ | | $a=1$ | $b=\sqrt3$ | $2$ | |||| |-|-|-| |$A=30^\circ$|$B=60^\circ$|$C=90^\circ$| |$a=1$|$b=\sqrt3$|$2$| |||| |-|-|-| |$A=30^\circ$|$B=60^\circ$|$C=90^\circ$| |$a=1$|$b=\sqrt3$|$2$| ### Circumcircle of a triangle ![](https://i.imgur.com/AUVmJpU.png =400x) $R=\frac{a}{2\sin A}=\frac{b}{2\sin B}=\frac{c}{2\sin C}$ ### Incenter of a triangle ![](https://i.imgur.com/LfFY1Md.png =400x) $r=\frac{\Delta}{S}$ $\Delta=\frac{1}{2}ab\sin C=\frac{1}{2}bc\sin A=\frac{1}{2}ac\sin B$ ## Inverse Trionometric Functions $\sin^{-1}x=\csc^{-1}\frac{1}{x}$ $\cos^{-1}x=\sec^{-1}\frac{1}{x}$ $\tan^{-1}x=\cot^{-1}\frac{1}{x}$ $\csc^{-1}x=\sin^{-1}\frac{1}{x}$ $\sec^{-1}x=\cos^{-1}\frac{1}{x}$ $\cot^{-1}x=\tan^{-1}\frac{1}{x}$ $\sin^{-1}x+\cos^{-1}x=\frac{\pi}{2}$ $\tan^{-1}x+\cot^{-1}x=\frac{\pi}{2}$ $\sec^{-1}x+\csc^{-1}x=\frac{\pi}{2}$ $\sin^{-1}(\sin x)=x$, $x\in[-\frac{\pi}{2},\frac{\pi}{2}]$ $\cos^{-1}(\cos x)=x$, $x\in[0,\pi]$ $\sec^{-1}(\sec x)=x$, $x\in(-\frac{\pi}{2},\frac{\pi}{2})$ $\sin(\sin^{-1}x)=x$, $x\in[-1,1]$ $\cos(\cos^{-1}x)=x$, $x\in[-1,1]$ $\tan(\tan^{-1}x)=x$, $x\in[-1,1]$ $\sin^{-1}x+\sin^{-1}y=\sin^{-1}[x\sqrt{1-y^2}+y\sqrt{1-x^2}]$ $\sin^{-1}x-\sin^{-1}y=\sin^{-1}[x\sqrt{1-y^2}-y\sqrt{1-x^2}]$ $\cos^{-1}x+\cos^{-1}y=\sin^{-1}[xy-\sqrt{1-y^2}\sqrt{1-x^2}]$ $\cos^{-1}x-\cos^{-1}y=\sin^{-1}[xy+\sqrt{1-y^2}\sqrt{1-x^2}]$ $\tan^{-1}x-\tan^{-1}y=\tan^{-1}[\frac{x+y}{1-xy}]$ $\tan^{-1}x+\tan^{-1}y=\tan^{-1}[\frac{x-y}{1+xy}]$ $2\sin^{-1}x=\sin^{-1}(2x\sqrt{1-x^2})$ $2\cos^{-1}x=\cos^{-1}(2x^2-1)$ $2\tan^{-1}x=\tan^{-1}(\frac{2x}{1-x^2})$ $\quad\quad\quad\quad=\cos^{-1}(\frac{1-x^2}{1+x^2})$ $\quad\quad\quad\quad=\sin^{-1}(\frac{2x}{1+x^2})$ $3\sin^{-1}x=\sin^{-1}(3x-4x^3)$ $3\cos^{-1}x=\cos^{-1}(4x^3-3x)$ $3\tan^{-1}x=\tan^{-1}(\frac{3x-x^3}{1-3x^2})$ | | Domain | Range | | -------------- |:---------------------------------:|:--------------------------------------:| | $y=\sin x$ | $\mathbb R$ | $[-1,1]$ | | $y=\sin^{-1}x$ | $[-1,1]$ | $[-\frac{\pi}{2},\frac{\pi}{2}]$ | | $y=\csc x$ | $\mathbb R-n\pi$ | $(-\infty, -1]\cup[1,\infty)$ | | $y=\csc^{-1}x$ | $(-\infty, -1]\cup[1,\infty)$ | $[-\frac{\pi}{2},\frac{\pi}{2}]-\{0\}$ | | $y=\cos x$ | $\mathbb R$ | $[-1,1]$ | | $y=\cos^{-1}x$ | $[-1,1]$ | $[0,\pi]$ | | $y=\sec x$ | $\mathbb R$ | $(-\infty, -1]\cup[1,\infty)$ | | $y=\sec^{-1}x$ | $(-\infty, -1]\cup[1,\infty)$ | $[0,\pi]-\{\frac{\pi}{2}\}$ | | $y=\tan x$ | $\mathbb R - (2n+1)\frac{\pi}{2}$ | $(-\infty, \infty)$ | | $y=\tan^{-1}x$ | $(-\infty, \infty)$ | $(-\frac{\pi}{2},\frac{\pi}{2})$ | | $y=\cot x$ | $\mathbb R-\{n\pi\}$ | $(-\infty, \infty)$ | | $y=\cot^{-1}x$ | $(-\infty, \infty)$ | $[0,\pi]$ | ## Licensing and Links [All Mathematics Formula by Abhays here](/@abhyas/maths_formula) <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/">Creative Commons Attribution-NonCommercial 4.0 International License</a>. . . . . . . . . . .. .. . . .. . . . .