Trigonometry

tags: Mathematics

All Mathematics Formula by Abhyas here

Please see README if this is the first time you are here.

Basic Geometry notes here

From Pythgorous Theorem

H2=B2+P2
sin2θ+cos2θ=1

csc2θcot2θ=1

sec2θtan2θ=1

sin4θ+cos4θ=12sin2θcos2θ
sin4θcos4θ=sin2θcos2θ

sin6θ+cos6θ=13sin2θcos2θ

(sinθ±cosθ)2=1±sin2θ

Circular Function

Image Not Showing Possible Reasons
  • The image file may be corrupted
  • The server hosting the image is unavailable
  • The image path is incorrect
  • The image format is not supported
Learn More →

360, 720, 1080, 1440, 1800

nPI±X

Because both

sin and
cos
negaive in IV quadrent, so same behaviour.
tan
will be positive.

sin(nπ+θ)=(1)nsinθ

cos(nπ+θ)=(1)ncosθ

tan(nπ+θ)=tanθ

Because

sin positive in I so need odd multiples of
π

tan
is negative in II and IV.
cos
only positive in IV so need even multiple of
π

sin(nπθ)=(1)n1sinθ

cos(nπθ)=(1)ncosθ

tan(nπθ)=tanθ

nPI

sin(nπ)=0 because perpendicular is 0
cos(nπ)=(1)n
because base eighter left or right of y axis
tan(nπ)=0
because perpendicular is 0

-x

Because only

cos is positive in IV
sin(θ)=sinθ

cos(θ)=cosθ

tan(θ)=tanθ

Sum and difference Identities (A+B)

sin(A+B)=sinAcosB+cosAsinB
sin(AB)=sinAcosBcosAsinB

cos(A+B)=cosAcosBsinAsinB
cos(AB)=cosAcosB+sinAsinB

tan(A+B)=tanA+tanB1tanAtanB
tan(AB)=tanAtanB1+tanAtanB

cot(A+B)=cotBcotA1cotB+cotA
cot(AB)=cotBcotA+1cotBcotA

Product of (A+B) and (A-B)

sin(A+B)sin(AB)=sin2Asin2B
=cos2Bcos2A

cos(A+B)cos(AB)=cos2Asin2B

tan(A+B)tan(AB)=tan2Atan2B1tan2Atan2B

Double Angle Identities 2A

sin2θ=2sinθcosθ
=2tanA1+tan2A

cos2θ=cos2θsin2θ

=2cos2θ1

=12sin2θ

=1tan2A1+tan2A

tan2θ=2tanθ1tan2θ

tanA+cotA=1sinAcosA
=2sin2A

=2csc2A

Triple Angle Identities 3A

sin3A=3sinA4sin3A
cos3A=4cos3A3cosA

tan3A=3tanAtan3A13tan2A

Half Angle Identities X/2

sinx2=±1cosx2
cosx2=±1+cosx2

tanx2=1cosx1+cosx

C-D Formula

sinC+sinD=2sinC+D2cosCD2
sinCsinD=2cosC+D2sinCD2

cosC+cosD=2cosC+D2cosCD2

cosCcosD=2sinC+D2sinCD2

Value of common angles

sin15=3122=cos75
cos15=3+122=sin75

sin18=514=cos72
cos18=10+254=sin72

sin36=10254=cos54

cos36=5+14=sin54

A, A+60, A-60 form

sinAsin(A+60)sin(A60)=14sin3A
cosAcos(A+60)cos(A60)=14cos3A

tanA+tan(A+60)tan(A60)=tan3A

cosA cos2A cos4A

cosAcos2Acos4A=sin8A23sinA

Numerator:

sin(2× largest angle
)

Denominator:
2
number of cos terms
×sin(
smallest angle
)

tan Or cot and x/2 Or (Pi/2 + x)

1+cosθsinθ=cotθ2
1cosθsinθ=tanθ2

1+sinθcosθ=tan(π4+θ2)
1sinθcosθ=tan(π4θ2)

1+sinθ1sinθ=tan(π4+θ2)
1sinθ1+sinθ=cot(π4+θ2)

1+cosθ1cosθ=cot2(π4+θ2)
1cosθ1+cosθ=tan2(π4+θ2)

cosθ+sinθcosθsinθ=tan(π4+θ)
cosθsinθcosθ+sinθ=tan(π4θ)

Range of Trigonometric expressoins

1sinθ1
1cosθ1

tanθ

secθ(,1][1,)
cscθ(,1][1,)

0sin2θ1
0cos2θ1

0tan2θ1

a2+b2(acosθ+bsinθ)a2+b2

Period of Trigonometic funtion

Period:

2π|a|
sin(ax+b)

cos(ax+b)

sec(ax+b)

csc(ax+b)

Period:

π|a|
tan(ax+b)

cot(ax+b)

Trigonometric Equation

Type 1 x = 0

sinx=0x=nπ
tanx=0x=nπ

cosx=0x=(2n+1)π2
cotx=0x=(2n+1)π2

secx=0x is not defined
cscx=0x
is not defined

Type 2 theta = alpha

sinθ=sinαx=nπ+(1)nα
cosθ=cosαx=2nπ±α

tanθ=tanαx=nπ+α

Type 3 squared

sin2θ=sin2αx=nπ±α
cos2θ=cos2αx=nπ±α

tan2θ=tan2αx=nπ±α

Properties of Triangles

Basic Traingle Formulas

A+B+C=180
A+B+C=180

Perimeter of a circle

2S=a+b+c

Area of Triangle from Heron's Formuls

Δ=S(Sa)(Sb)(Sc)
where
S=a+b+c2

Trigonometric ratios of sum of angles

A+B = Pi-C

A+B=πC

sin(A+B)=sinC
sin(B+C)=sinA

sin(A+C)=sinB

cos(A+B)=cosC
cos(B+C)=cosA

cos(A+C)=cosB

tan(A+B)=tanC
tan(B+C)=tanA

tan(A+C)=tanB

(A+B)/2 = Pi/2 - C/2

A+B2=π2C2

sin(A+B2)=cosC2
sin(B+C2)=cosA2

sin(A+C2)=cosB2

cos(A+B2)=sinC2
cos(B+C2)=sinA2

cos(A+C2)=sinB2

tan(A+B2)=cotC2
tan(B+C2)=cotA2

tan(A+C2)=cotB2

tan(A+B+C)

In

ABC
tan(A+B+C)=tanA+tanB+tanCtanAtanBtanC1tanAtanBtanBtanCtanCtanA

Now,
tan(A+B+C)=tan(π)=0=ab

a=0

We get the formula

tanA+tanB+tanC=tanAtanBtanC
in any
ABC

Now, Dividing both sides by

tanAtanBtanC
cotBcotC+cotAcotC+cotAcotB=1

Now, if

A+B+C=π2 then,
tan(A+B+C)=tan(π2)=10=ab

b=0

1tanAtanBtanBtanCtanCtanA=0

tanAtanB+tanBtanC+tanCtanA=1

Identities in any Triangle

2A 2B 2C

In sin

sin2A+sin2B+sin2C=4sinAsinBsinC
sin goes to sin

If one is negative

sin2A+sin2Bsin2C=4cosAcosBsinC
then negative will be sin.

If more then one negative. Then take common -1.

sin2Asin2Bsin2C
1(sin2A+sin2B+sin2C)

=4sinAcosBcosC

In cos

cos2A+cos2B+cos2C=14cosAcosBcosC
cos goes to cos with -1

If one is negative

cos2A+cos2Bcos2C=14sinAsinBcosC
then negative will be cos

A+B+C

In sin

sinA+sinB+sinC=4cosA2cosB2cosC2
π2θ
so change ratio

If one is negative

sinA+sinBsinC=4sinA2sinB2cosC2
Invert which are positive in +ve form

In cos

cosA+cosB+cosC=1+4sinA2sinB2sinC2
π2θ
so all positive and change ratio

If one is negative

cosA+cosBcosC=1+4cosA2cosB2sinC2
-1 + Invert which are positive in +ve form

Notice: In case of negative invert from +ve from whichever are not negative.

Relation B/w side and angle (sine formula)

sinAa
sinBb

sinCc

Formula 1

sinAa=sinBb=sinCc
sinA=ka

sinB=kb

sinC=kc

Formula 2

asinA=bsinB=csinC
a=ksinA

b=ksinB

c=ksinC

Notice: Same angle and same side relation
NOTE: Can only use either formula 1 or 2 in one question

cosine formula

cosA=b2+c2a22bc
cosB=a2+c2b22ac

cosC=a2+b2c22ab

Notice: One angle and all three sides relation

Projection formula

a=bcosC+ccosB
b=acosC+ccosA

c=acosB+bcosA

Two angles and all three sides relation

Area of Triangle

Area

=12acsinB=12absinC=12bcsinA

Half angle formula

sinA2=(Sb)(Sc)bc
sinB2=(Sa)(Sc)ac

sinC2=(Sa)(Sb)ab

cosA2=S(Sa)bc
cosB2=S(Sb)ac

cosC2=S(Sc)ab

tanA2=(Sb)(Sc)S(Sa)
tanB2=(Sa)(Sc)S(Sb)

tanC2=(Sa)(Sb)S(Sc)

Trick

A=30
B=60
C=90
a=1
b=3
2
A=30
B=60
C=90
a=1
b=3
2
A=30
B=60
C=90
a=1
b=3
2

Circumcircle of a triangle

R=a2sinA=b2sinB=c2sinC

Incenter of a triangle

r=ΔS
Δ=12absinC=12bcsinA=12acsinB

Inverse Trionometric Functions

sin1x=csc11x
cos1x=sec11x

tan1x=cot11x

csc1x=sin11x

sec1x=cos11x

cot1x=tan11x

sin1x+cos1x=π2
tan1x+cot1x=π2

sec1x+csc1x=π2

sin1(sinx)=x,
x[π2,π2]

cos1(cosx)=x
,
x[0,π]

sec1(secx)=x
,
x(π2,π2)

sin(sin1x)=x,
x[1,1]

cos(cos1x)=x
,
x[1,1]

tan(tan1x)=x
,
x[1,1]

sin1x+sin1y=sin1[x1y2+y1x2]
sin1xsin1y=sin1[x1y2y1x2]

cos1x+cos1y=sin1[xy1y21x2]

cos1xcos1y=sin1[xy+1y21x2]

tan1xtan1y=tan1[x+y1xy]

tan1x+tan1y=tan1[xy1+xy]

2sin1x=sin1(2x1x2)
2cos1x=cos1(2x21)

2tan1x=tan1(2x1x2)

=cos1(1x21+x2)

=sin1(2x1+x2)

3sin1x=sin1(3x4x3)
3cos1x=cos1(4x33x)

3tan1x=tan1(3xx313x2)

Domain Range
y=sinx
R
[1,1]
y=sin1x
[1,1]
[π2,π2]
y=cscx
Rnπ
(,1][1,)
y=csc1x
(,1][1,)
[π2,π2]{0}
y=cosx
R
[1,1]
y=cos1x
[1,1]
[0,π]
y=secx
R
(,1][1,)
y=sec1x
(,1][1,)
[0,π]{π2}
y=tanx
R(2n+1)π2
(,)
y=tan1x
(,)
(π2,π2)
y=cotx
R{nπ}
(,)
y=cot1x
(,)
[0,π]

All Mathematics Formula by Abhays here


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

.
.
.

.
.
.
.
.
.
..
..
.
.
..
.
.
.

.