--- disqus: abhyas29 --- # Permutation and Combination ###### tags: `Mathematics` [TOC] [All Mathematics Formula by Abhyas here](/@abhyas/maths_formula) Please see [README](/@abhyas/maths_formula#README) if this is the first time you are here. ## Fundamental Principle of Counting ### Addition Principle When things are chosen such that 1 way or 2 ways or 3 ways etc then add 1+2+3+... ### Multiplication Principle When things are chosen such that 1 ways and 2 ways and 3 ways etc then multiply 1\*2\*3\*... ## Concept: Filling the vacant spaces **Eg 1.** How many 4 digit numbers can be formed using the digits 1,2,3,4,5 (without repetition)? Use addition Principle | 5 choices |4 choices|3 choices|2 choices| |-|-|-|-| |All number can be used|1 number have been used|2 numbers have been used|3 numbers have been used|only 2 unused numbers| Use multiplication principle 5\*4\*3\*2 ways 120 ways **Eg 2.** How many 4 digit numbers can be formed using the digits 1,2,3,4,5 (repetition allowed)? Since repetition is allowed all positions can be filled with all 5 digits | 5 choices |5 choices|5 choices|5 choices| |-|-|-|-| 5\*5\*5\*5 ways 625 ways **Eg 3.** How many 4 digit numbers can be formed using the digits 0,1,2,3,4 (without repetition)? Similar to Eg 1 | 4 choices | 4 choices| 3 choices| 2 choices | | -| -| -| --| | Since 0 cannot be here | Here 0 can be used | 3 digits remaining | 2 digits remaining | **Eg 4.** How many 4 digit numbers can be formed using the digits 0,1,2,3,4 (without repetition)? Similar to Eg 2 | 4 choices | 5 choices| 5 choices| 5 choices | | -| -| -| --| | Since 0 cannot be here | 0 and all other digits can be used|all digits can be used |all digits| **Eg 5.** How many 4 digit numbers divisible by 4 can be formed using the digits 0,1,2,3,4 (without repetition) Case 1: Last 2 digits are 04 |3 choices | 2 choices|0|4| |-|-|-|-| |||fixed|fixed| 3\*2\*1\*1 ways 6 ways Case 2: Last 2 digits are 12 |2 choices|2 choices|1|2| |-|-|-|-| |0 cannot be used|2 remaining digits|fixed|fixed| 3\*2\*1\*1 ways 6 ways Case 3: Last 2 digits are 20 |3 choices| 2 choices|2|0| |-|-|-|-| |||fixed|fixed| 3\*2\*1\*1 ways 6 ways Case 4: Last 2 digits are 24 |2 choices |2 choices|2|4| |-|-|-|-| |0 cannot be used||fixed|fixed| 2\*2\*1\*1 ways 4 ways Case 5: Last 2 digits are 40 |3 choices|2 choices|4|0| |-|-|-|-| |||fixed|fixed| 3\*2\*1\*1 ways 6 ways Case 6: Last 2 digits are 40 |3 choices|2 choices|4|0| |-|-|-|-| |||fixed|fixed| 3\*2\*1\*1 ways 6ways Total ways = 6+4+6+4+4+6 = 30 ways ## Factorial Factorial of natural number $n$ is product of first $n$ natural numbers $5!=5\times4\times3\times2\times1$ $n!=n\times(n-1)\times(n-2)\times...\times3\times2\times1$ $\therefore n!=n\times(n-1)!$ Note: factorial of -ve and fractional number is not possible ### Common Factorials - $0!=1$ - $1!=1$ - $2!=2$ - $3!=6$ - $4!=24$ - $5!=120$ - $6!=720$ - $7!=5040$ ## Permutation: Arrangement Number of ways of arranging $r$ objects out of $n$ available distinct objects. ### Arranging n objects at r places Arrange 5 objects in 3 places |5 choices|4 choices|3 choices| |-|-|-| $\therefore 5\times4\times3$ ways $=\frac{5\times4\times3\times2\times1}{2\times1}$ ways $=\frac{5!}{2!}$ ways $=\frac{5!}{(5-3)!}$ ways $\therefore$ Arranging $n$ objects in $r$ places |n choices|(n-1) choices| ...|(n-r+1) choices| |-|-|-|-| $\therefore n\times(n-1)\times(n-2)\times\times...\times(n-r+1)$ ways $=\frac{n!}{(n-r)!}$ |$^nP_r=\frac{n!}{(n-r)!}$| |-| **Eg 1.** In a train 3 seats are vacant then in how many ways can 5 passengers sit Arrange 5 passengers in 3 seats $\therefore ^5P_3=\frac{5!}{(5-3)!}$ ### Arranging n objects at n places $^nP_n=\frac{n!}{(n-n)!}=\frac{n!}{0!}=\frac{n!}{1}\\=n!$ **Eg 1.** How many different words can be formed using all the letters of the word DELHI(words may be meaningless) $^5P_5=5!=120$ **Eg 2.** How many numbers of five digits can be formed from the numbers 2,0,5,3,7 when repetition of digits is not allowed all arrangement - all those arrangements starting with 0 $^5P_5-^4P_4=120-24=96$ **Eg 3.** Words are created by rearranging the letters of the word TABLE and arranged alphabetically. Then what is the position of the word TABLE. Alphabetically arranging all the letter: A,B,E,L,T These come before TABLE: 1. A _ _ _ _ : 4! words starting with A 2. B _ _ _ _ : 4! words starting with B 3. E _ _ _ _ : 4! 4. L _ _ _ _ : 4! 5. T A B E _ : 1! After this table appears words before TABLE: $4!+4!+4!+4!+1=4\times4!+1=4\times24+1=96+1=97$ words $\because$ $97$ words appear before TABLE $\therefore$ position of TABLE is $98$ ### Arranging alike objects Number of ways of arranging $p+q+r$ objects out of which $p$ are alike of one kind and $q$ are alike of second kind and $r$ are distinct **Eg 1.** How many 3 digit number can be fomed using the digits 1, 2 and 2 $\frac{3!}{2!}=3$ ways ## Combination: Selection Number of ways of selecting $r$ objects out of $n$ available distinct objects $\frac{^nP_r}{r!}=\frac{n!}{(n-r)!\times r!}=^nC_r$ Also, $^nP_r=^nC_r\times r!$ **Eg 1** In how many ways 2 boys can be selected out of a group of 4 boys? Let the boys be $A,B,C,D$ Groups are: $AB, AC, AD, BA, BC, BD, CA, CB, CD$ $\therefore$ 6 ways $\frac{^4P_2}{2!}$ ways $=\frac{4!}{2!\times2!}=6$ ways ### Common values for various nCr - $^nC_0=1$ Don't select any thing from n. 1 way of doing this: don't choose anything. - $^nC_1=n$ Choose 1 thing from n things. n ways of doing this: 1^st^ thing, 2^nd^ thing,..., n^th^ thing - $^nC_n=1$ Choose n things out of n thing. 1 way of doing this: Choose all of them. - $^nC_r=^nC_{c-r}$ $\because\, ^nC_r=\frac{n!}{(n-r)!r!}$ and $^nC_{n-r}=\frac{n!}{(n-n+r)!(n-r)!}=\frac{n!}{r!(n-r)!}$ ## Geometry based questions ## Licensing and Links [All Mathematics Formula by Abhays here](/Uhf7AR-EQcKrvHaPG9FSXg) <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/">Creative Commons Attribution-NonCommercial 4.0 International License</a>.