---
disqus: abhyas29
---
# Permutation and Combination
###### tags: `Mathematics`
[TOC]
[All Mathematics Formula by Abhyas here](/@abhyas/maths_formula)
Please see [README](/@abhyas/maths_formula#README) if this is the first time you are here.
## Fundamental Principle of Counting
### Addition Principle
When things are chosen such that 1 way or 2 ways or 3 ways etc
then add 1+2+3+...
### Multiplication Principle
When things are chosen such that 1 ways and 2 ways and 3 ways etc
then multiply 1\*2\*3\*...
## Concept: Filling the vacant spaces
**Eg 1.** How many 4 digit numbers can be formed using the digits 1,2,3,4,5 (without repetition)?
Use addition Principle
| 5 choices |4 choices|3 choices|2 choices|
|-|-|-|-|
|All number can be used|1 number have been used|2 numbers have been used|3 numbers have been used|only 2 unused numbers|
Use multiplication principle
5\*4\*3\*2 ways
120 ways
**Eg 2.** How many 4 digit numbers can be formed using the digits 1,2,3,4,5 (repetition allowed)?
Since repetition is allowed all positions can be filled with all 5 digits
| 5 choices |5 choices|5 choices|5 choices|
|-|-|-|-|
5\*5\*5\*5 ways
625 ways
**Eg 3.** How many 4 digit numbers can be formed using the digits 0,1,2,3,4 (without repetition)?
Similar to Eg 1
| 4 choices | 4 choices| 3 choices| 2 choices |
| -| -| -| --|
| Since 0 cannot be here | Here 0 can be used | 3 digits remaining | 2 digits remaining |
**Eg 4.** How many 4 digit numbers can be formed using the digits 0,1,2,3,4 (without repetition)?
Similar to Eg 2
| 4 choices | 5 choices| 5 choices| 5 choices |
| -| -| -| --|
| Since 0 cannot be here | 0 and all other digits can be used|all digits can be used |all digits|
**Eg 5.** How many 4 digit numbers divisible by 4 can be formed using the digits 0,1,2,3,4 (without repetition)
Case 1: Last 2 digits are 04
|3 choices | 2 choices|0|4|
|-|-|-|-|
|||fixed|fixed|
3\*2\*1\*1 ways
6 ways
Case 2: Last 2 digits are 12
|2 choices|2 choices|1|2|
|-|-|-|-|
|0 cannot be used|2 remaining digits|fixed|fixed|
3\*2\*1\*1 ways
6 ways
Case 3: Last 2 digits are 20
|3 choices| 2 choices|2|0|
|-|-|-|-|
|||fixed|fixed|
3\*2\*1\*1 ways
6 ways
Case 4: Last 2 digits are 24
|2 choices |2 choices|2|4|
|-|-|-|-|
|0 cannot be used||fixed|fixed|
2\*2\*1\*1 ways
4 ways
Case 5: Last 2 digits are 40
|3 choices|2 choices|4|0|
|-|-|-|-|
|||fixed|fixed|
3\*2\*1\*1 ways
6 ways
Case 6: Last 2 digits are 40
|3 choices|2 choices|4|0|
|-|-|-|-|
|||fixed|fixed|
3\*2\*1\*1 ways
6ways
Total ways = 6+4+6+4+4+6 = 30 ways
## Factorial
Factorial of natural number $n$ is product of first $n$ natural numbers
$5!=5\times4\times3\times2\times1$
$n!=n\times(n-1)\times(n-2)\times...\times3\times2\times1$
$\therefore n!=n\times(n-1)!$
Note: factorial of -ve and fractional number is not possible
### Common Factorials
- $0!=1$
- $1!=1$
- $2!=2$
- $3!=6$
- $4!=24$
- $5!=120$
- $6!=720$
- $7!=5040$
## Permutation: Arrangement
Number of ways of arranging $r$ objects out of $n$ available distinct objects.
### Arranging n objects at r places
Arrange 5 objects in 3 places
|5 choices|4 choices|3 choices|
|-|-|-|
$\therefore 5\times4\times3$ ways
$=\frac{5\times4\times3\times2\times1}{2\times1}$ ways
$=\frac{5!}{2!}$ ways
$=\frac{5!}{(5-3)!}$ ways
$\therefore$ Arranging $n$ objects in $r$ places
|n choices|(n-1) choices| ...|(n-r+1) choices|
|-|-|-|-|
$\therefore n\times(n-1)\times(n-2)\times\times...\times(n-r+1)$ ways
$=\frac{n!}{(n-r)!}$
|$^nP_r=\frac{n!}{(n-r)!}$|
|-|
**Eg 1.** In a train 3 seats are vacant then in how many ways can 5 passengers sit
Arrange 5 passengers in 3 seats
$\therefore ^5P_3=\frac{5!}{(5-3)!}$
### Arranging n objects at n places
$^nP_n=\frac{n!}{(n-n)!}=\frac{n!}{0!}=\frac{n!}{1}\\=n!$
**Eg 1.** How many different words can be formed using all the letters of the word DELHI(words may be meaningless)
$^5P_5=5!=120$
**Eg 2.** How many numbers of five digits can be formed from the numbers 2,0,5,3,7 when repetition of digits is not allowed
all arrangement - all those arrangements starting with 0
$^5P_5-^4P_4=120-24=96$
**Eg 3.** Words are created by rearranging the letters of the word TABLE and arranged alphabetically. Then what is the position of the word TABLE.
Alphabetically arranging all the letter: A,B,E,L,T
These come before TABLE:
1. A _ _ _ _ : 4! words starting with A
2. B _ _ _ _ : 4! words starting with B
3. E _ _ _ _ : 4!
4. L _ _ _ _ : 4!
5. T A B E _ : 1!
After this table appears
words before TABLE: $4!+4!+4!+4!+1=4\times4!+1=4\times24+1=96+1=97$ words
$\because$ $97$ words appear before TABLE
$\therefore$ position of TABLE is $98$
### Arranging alike objects
Number of ways of arranging $p+q+r$ objects out of which $p$ are alike of one kind and $q$ are alike of second kind and $r$ are distinct
**Eg 1.** How many 3 digit number can be fomed using the digits 1, 2 and 2
$\frac{3!}{2!}=3$ ways
## Combination: Selection
Number of ways of selecting $r$ objects out of $n$ available distinct objects
$\frac{^nP_r}{r!}=\frac{n!}{(n-r)!\times r!}=^nC_r$
Also, $^nP_r=^nC_r\times r!$
**Eg 1** In how many ways 2 boys can be selected out of a group of 4 boys?
Let the boys be $A,B,C,D$
Groups are: $AB, AC, AD, BA, BC, BD, CA, CB, CD$
$\therefore$ 6 ways
$\frac{^4P_2}{2!}$ ways
$=\frac{4!}{2!\times2!}=6$ ways
### Common values for various nCr
- $^nC_0=1$
Don't select any thing from n. 1 way of doing this: don't choose anything.
- $^nC_1=n$
Choose 1 thing from n things. n ways of doing this: 1^st^ thing, 2^nd^ thing,..., n^th^ thing
- $^nC_n=1$
Choose n things out of n thing. 1 way of doing this: Choose all of them.
- $^nC_r=^nC_{c-r}$
$\because\, ^nC_r=\frac{n!}{(n-r)!r!}$ and
$^nC_{n-r}=\frac{n!}{(n-n+r)!(n-r)!}=\frac{n!}{r!(n-r)!}$
## Geometry based questions
## Licensing and Links
[All Mathematics Formula by Abhays here](/Uhf7AR-EQcKrvHaPG9FSXg)
<a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/">Creative Commons Attribution-NonCommercial 4.0 International License</a>.