--- disqus: abhyas29 --- # Matrix ###### tags: `Mathematics` [All Mathematics Formula by Abhyas here](/@abhyas/maths_formula) Please see [README](#README) if this is the first time you are here. ## Matrix Rectangular arrangement of $m \times n$ numbers having $m$ rows and $n$ columns. Matrix is denoted by: $\begin{bmatrix}\end{bmatrix}$ or $\begin{pmatrix}\end{pmatrix}$ or $\begin{Vmatrix}\end{Vmatrix}$ ## General Form $A=\begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$ $a_{ij}$ is the general element $m \times n$ is the order of matrix read as m corss n or m by n.<br> $\therefore A=\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & \ldots & a_{1n}\\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & \ldots & a_{2n}\\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & \ldots & a_{3n}\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ a_{m1} & a_{m2} & a_{m3} & a_{m4} & a_{m5} & \ldots & a_{mn}\\ \end{bmatrix}_{m \times n}$ ## Types of Matrices 1. **Row Matrix** Matirx having one row. Order: $1 \times n$ 2. **Column Matrix** Matrix having one column. Order: $m \times 1$ 3. **Square Matrix** Square shaped. Order: $m \times m$ 4. **Rectangular Matrix** Rectangular shaped. Order $m \times n, m \ne n$ 5. **Diagonals** a. _Principal Dialognal_ All those elements $a_{ij}$ where $i = j$ eg. $A=\begin{bmatrix}PD_{11} & - & -\\ - & PD_{22} & -\\ - & - & PD_{33}\end{bmatrix}_{3 \times 3}$ b. _Following Diagonal_ All those Elements $a_{ij}$ where $j = m - i + 1$ eg. $A=\begin{bmatrix}- & - & FD_{13}\\ - & FD_{22} & -\\ - FD_{31} & - & -\end{bmatrix}_{3 \times 3}$ 6. **Diagonal Matrix** Square matrix where except principal diagonal all other elements are $0$. $A=\begin{bmatrix}d_1 & 0 & 0\\ 0 & d_2 & 0\\ 0 & 0 & d_3\end{bmatrix}_{3 \times 3}$ $A=diag(d_1, d_2, d_3)$ **Property** - $A^n=diag(d_1^n, d_2^n, d_3^n)$ - $A^{-1}=diag(d_1^{-1}, d_2^{-1}, d_3^{-1})$ 7. **Triangular Matrix** a. _Upper Triangular Matrix_ Square matrix where _except_ principal diagonal and elements above it where $i < j$, all other elements are 0. eg. $A=\begin{bmatrix}a_{11} & a_{12} & a_{13}\\ 0 & a_{22} & a_{23}\\ 0 & 0 & a_{33}\end{bmatrix}_{3 \times 3}$ b. _Lower Triangular Matrix_ Square matrix where _except_ principal diagonal and elements below it where $i > j$, all other elements are 0. eg. $A=\begin{bmatrix}a_{11} & 0 & 0\\ a_{21} & a_{22} & 0\\ a_{31} & a_{32} & a_{33}\end{bmatrix}_{3 \times 3}$ 8. **Scalar Matrix** Diagonal Matrix where all diagonal elements are equal. eg. $A=\begin{bmatrix}k & 0 & 0\\ 0 & k & 0\\ 0 & 0 & k\end{bmatrix}_{3 \times 3}$ 9. **Identity Matrix** Scalar matrix where all diagonal elements are $1$. It is denoted by $I_m$ where $m$ is the order. eg. $I_3=\begin{bmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}_{3 \times 3}$. 10. **Trace of Matrix** Sum of diagonal elements of a square matrix $Tr(A)=a_{11}+a_{22}+a_{33}+a_{44}+ \ldots + a_{mm}$ $\therefore Tr(A)=\sum_{i=1}^{n} a_{ij}$ Properties of Tract of Matrix 1. $Tr(A)=Tr(A^T)$ 2. $Tr(kA)=kTr(A)$ 3. $Tr(AB)=Tr(BA)$ 4. $Tr(I_n)=n$ 11. **Singular Matrix** Square matrix whose determinant is $0$. $\begin{vmatrix}A\end{vmatrix}=0$ 12. **Non Singular Matrix** Determinant of matrix is not equal to $0$ $\begin{vmatrix}A\end{vmatrix}\ne0$ 13. **Sub Matrix** Matrix obtained by deleting rows or columns or both in given matrix A.Similar as minor in Determinant. 14. **Idempotent Matrix** Square matrix where $A^2=A$ 15. **Invoutary Matrix** Square matrix where $A^2=I$ 16. **Nilpotent Matrix** Square matrix of order $m$ where $A^k=0$ where $k$ is minimum +ve integer and $0$ is a null matrix ## Algebra of Matrices ### Equality Two matrices are said to be equal if their order is same and corresponing elements are equal. ### Addition and Subtracion Two matrics having same order can be added or subtracted by adding or subtracting corresponing elements. ### Scalar Multiplicaiton $kA$ if found by multiplying all the element of $A$ by $k$ ### Multiplication of two matrices #### Condition $A \times B$ is only possible if $columns(A)=rows(B)=p$(say) Thus multiplication is possible for $A_{mp}$ and $B_{pn}$ Order of product will be $m \times n$ #### Method Multiplicaiton is done by taking sum of $row(A)\times column(B)$ eg. $A = \begin{bmatrix} 1 & -2 & 3\\ 2 & 3 & -1\\ 0 & 2 & 4 \end{bmatrix}_{3 \times 3}$ and $B = \begin{bmatrix} 3 & 4 & -2\\ 0 & 2 & 3\\ 1 & 3 & 5 \end{bmatrix}_{3 \times 3}$ $\therefore AB = \begin{bmatrix} (1\times3+-2\times0+3\times1) & \dots & \dots\\ \dots & \dots & \dots\\ \dots & \dots & \dots \end{bmatrix}_{3 \times 3}$ $\therefore AB=\begin{bmatrix} 5 & 9 & 7\\ 5 & 11 & 0\\ 2 & 1 & 26 \end{bmatrix}_{3 \times 3}$ ### Properties of Multiplication 1. Generally $AB \ne BA$ 2. $(AB)C = A(BC)$ Associative 3. $A(B+C) = AB + AC$ Distributive 4. $I_m \times A_{m \times n} = A_{m \times n} = A_{m \times n} \times I_n$ 5. If A is a square matrix then $A^{n+1} = A^n \times A$ 6. $(A \pm B)^2 = (A \pm B) \times (A \pm B)$ $=A^2 \pm AB \pm BA + B^2$ 7. $(A+B)(A-B)= A^2 - AB + BA - B^2$ 8. If $AB = 0$ does not imply that $A=0$ and/or $B=0$ ## Transpose of Matrix $A^T$ or $A^{'}$ Change rows into columns or columns into rows. eg. $A=\begin{bmatrix}1 & 2 & 3 & 4\\ a & b & c & d \\ \end{bmatrix}$ $\therefore A^T=\begin{bmatrix}1 & 2\\ 2 & b\\ 3 & c\\ 4 & d\\ \end{bmatrix}$ ### Properties of Transpose 1. $(A^T)^T=A$ 2. $(A \pm B)^T=A^T \pm B^T$ 3. $(ABC)^T = C^TB^TA^T$[Remember, product is not commutative. ] Reversal Law 4. $Tr(A) = Tr(A^T)$ 5. If $A^T=A \implies A$ is symetric matrix eg. $A=\begin{bmatrix}a & b\\ b & c\\ \end{bmatrix}$ and $A^T=\begin{bmatrix}a & b\\ b & c\\ \end{bmatrix}$ $\because A=A^T \therefore A$ is a **symetrix matrix** 6. If $A^T=-A \implies A$ is skew-symetric matrix eg. $A=\begin{bmatrix}0 & -a& b\\ a & 0 & c\\ -b& -c& 0\\ \end{bmatrix}$ and $A^T=\begin{bmatrix}0 & a & -b\\ -a & 0 & -c\\ b & c & 0\\ \end{bmatrix}$$ $\because -A=A^T \therefore A$ is a **skew-symetrix matrix** 7. $(kA)^T=kA^T$ 8. For square matrix $A$, if $AA^T=A^TA=I$ then A is **Orthogonal Matrix** ## Matrix to sum of symetric and skew-symetric matrix For given matrix $A$ do $A=\frac{1}{2}(A+A^T) + \frac{1}{2}(A-A^T)$ ## Cofactors of elemnets of Matrix Minor of element multiplied by $(-1)^{i+j}$ eg. $A=\begin{bmatrix}1& 4 & 5\\ 3 & 2 & 6\\ 0 & 1 & 0\\\end{bmatrix}$ Cofactor of middle elelment 2 would be, $C_{22}=(-1)^{2+2}\begin{vmatrix}1 & 5 \\ 0 & 0\\\end{vmatrix}$ $\therefore C_{22}=\begin{vmatrix}1 & 5 \\ 0 & 0\\\end{vmatrix}$ NOTE: minor is part of determinant. Find notes for minor. ## Adjoint of a Matrix $adjA$ $A$ is a square matrix $C_{ij}$ are the cofactors of $a_{ij}$ $\therefore\, adjA=\begin{bmatrix}C_{ij}\end{bmatrix}^T$ ## Licensing and Links [All Mathematics Formula by Abhays here](/Uhf7AR-EQcKrvHaPG9FSXg) <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/">Creative Commons Attribution-NonCommercial 4.0 International License</a>.