--- disqus: abhyas29 --- # Logarithm ###### tags: `Mathematics` [All Mathematics Formula by Abhyas here](/@abhyas/maths_formula) Please see [README](https://hackmd.io/@abhyas/maths_formula#README) if this is the first time you are here. ## Definition Logarithm of any number $N$ to the base $a$ is the power to which the base $a$ must be raised to obtain $N$ $\log_aN=x \Leftrightarrow a^x=N\\ a > 0, a \ne 1, N > 0$ $\log_{10}a$ is sometimes written as $\log a$ and is called Common logarithm. $\log_ea$ is sometimes written as $\ln a$ and is called natural logarithm. ## Graph of Exponential Functions Graph in the form $N = a^x$ y-axis is $N$ x-axis is $x$ a is different for each graph <iframe src="https://www.desmos.com/calculator/jmun0w803b?embed" width="479px" height="479px" style="border: 1px solid #ccc" frameborder=0></iframe> 1. $y = 5^x$ in Blue 1. $y = 2^x$ in Red 1. $y = 0.5^x$ in Orange Looking at this graph it it evident that $N$ is always positive $\forall a > 0$. ## Fundamental logarithmic Identity 1. $a^{\log_aN}=N$ ## Fundamental Laws of Logarithms 1. $\log_am+\log_an=\log_amn$ 2. $\log_am-\log_an=\log_a\frac{m}{n}$ 3. $\log_am^n=n\log_am$ 4. Base Change formula $\log_am = \frac{\log_bm}{\log_ba}$ 5. Interchange $\log_ab=\frac{1}{\log_ba}$ 6. $\log_{a^\beta}m^\alpha=\frac{\alpha}{\beta}\log_am$ 7. $\log_ba\times\log_ab=1$ 8. $a^{\log_cb}=b^{\log_ca}$ 9. $a^x=e^{x\ln{a}}$ 10. $\log^2_{10}x=\ne \log_{10}x^2$ ## Graph of logarithmic functions ### Graph 1 <iframe src="https://www.desmos.com/calculator/e81l79kmck?embed" width="479px" height="479px" style="border: 1px solid #ccc" frameborder=0></iframe> 1. $y = \log_2x$ in Blue Here $a>1$ 2. $y = \log_{0.3}x$ in Red Here $0 < a < 1$ #### Observations from graph 1. All $\log$ graphs passes through $(1,0)$ $\log_a1 = 0$ 2. No graph for -ve $x$ 3. For $a>1$ 1. $\log_a0 = -\infty$ 2. Increasing graph 4. For $0<a<1$ 1. $log_a0=\infty$ 2. Decreasing graph ### Graph 2 <iframe src="https://www.desmos.com/calculator/hcmfpux3vg?embed" width="479px" height="479px" style="border: 1px solid #ccc" frameborder=0></iframe> 1. $y = \log_{10}x$ in Red 2. $y = \log_ex$ in Blue 3. $y = \log_2x$ in Orange Note: $2 < e < 10$ ### Graph 3 <iframe src="https://www.desmos.com/calculator/xpyb8kpsq8?embed" width="479px" height="479px" style="border: 1px solid #ccc" frameborder=0></iframe> 1. $y = \log_{\frac{1}{10}}x$ in Red 2. $y = \log_{\frac{1}{e}}x$ in Blue 4. $y = \log_{\frac{1}{2}}x$ in Orange Note: $\frac{1}{10} < \frac{1}{e} < \frac{1}{2}$ ## Logarithmic Equations ### Constant Base $\log_a{f(x)}=\log_a{g(x)}$ Condition to solve: $f(x)>0$ and $g(x) >0$ To solve: Take anti-log to get $f(x)=g(x)$ Final solution = condition $\cap$ solution ### Function as Base $\log_{h(x)}{f(x)}=\log_{h(x)}{g(x)}$ Condition to solve: $f(x)>0$ and $g(x) >0$ and $h(x) > 0$ and $h(x) \ne 1$ To solve: Take anti-log to get $f(x)=g(x)$ Final solution = condition $\cap$ solution ## Licensing and Links [All Mathematics Formula by Abhays here](/Uhf7AR-EQcKrvHaPG9FSXg) <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/">Creative Commons Attribution-NonCommercial 4.0 International License</a>.