Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
給予一個二元樹,判斷它是否為合法的二元搜索樹(BST)。
一個BST的定義為以下:
- 左邊的子樹只會包含比你小的key的節點。
- 右邊的子樹只會包含比你大的key的節點。
- 左子樹和右子樹也都是二元搜索樹。
Example 1:
2
/ \
1 3
Input: [2,1,3]
Output: true
Example 2:
5
/ \
1 4
/ \
3 6
Input: [5,1,4,null,null,3,6]
Output: false
Explanation: The root node's value is 5 but its right child's value is 4.
NULL
(空節點)為止都沒有錯誤就回傳true
。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool large(TreeNode* root, TreeNode* n)
{
if(!n)
return true;
if(root->val <= n->val)
return false;
return large(root, n->left) && large(root, n->right);
}
bool small(TreeNode* root, TreeNode* n)
{
if(!n)
return true;
if(root->val >= n->val)
return false;
return small(root, n->left) && small(root, n->right);
}
bool isValidBST(TreeNode* root) {
if(!root)
return true;
if((large(root, root->left) && small(root, root->right)) == false)
return false;
return isValidBST(root->right) && isValidBST(root->left);
}
};
LeetCode
C++