# 【LeetCode】 973. K Closest Points to Origin ## Description > We have a list of `points` on the plane. Find the `K` closest points to the origin `(0, 0)`. > (Here, the distance between two points on a plane is the Euclidean distance.) > You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in.) > Note: > * `1 <= K <= points.length <= 10000` > * `-10000 < points[i][0] < 10000` > * `-10000 < points[i][1] < 10000` > 在平面上我們擁有一個列表的點。找到前`K`個最靠近原點`(0, 0)`的點。 > (在這裡,兩點的距離定義為歐氏距離。) > 你用任何順序可以回傳答案。答案保證是唯一的(除了不同排序)。 > 提示: > * `1 <= K <= points.length <= 10000` > * `-10000 < points[i][0] < 10000` > * `-10000 < points[i][1] < 10000` ## Example: ``` Example 1: Input: points = [[1,3],[-2,2]], K = 1 Output: [[-2,2]] Explanation: The distance between (1, 3) and the origin is sqrt(10). The distance between (-2, 2) and the origin is sqrt(8). Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin. We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]]. Example 2: Input: points = [[3,3],[5,-1],[-2,4]], K = 2 Output: [[3,3],[-2,4]] (The answer [[-2,4],[3,3]] would also be accepted.) ``` ## Solution * 將所有點排序,比較function自己重寫,定義為與原點的距離。 * 原點的距離是$\sqrt{x^2 + y^2}$,但為了節省計算時間可以不用開根號。 * 排序完畢之後,使用`resize()`拿出前`K`項。 ### Code ```C++=1 bool myCompare (vector<int> p1,vector<int> p2) { return (p1[0] * p1[0] + p1[1] * p1[1] < p2[0] * p2[0] + p2[1] * p2[1]); } class Solution { public: vector<vector<int>> kClosest(vector<vector<int>>& points, int K) { sort(points.begin(), points.end(), myCompare); points.resize(K); return points; } }; ``` ###### tags: `LeetCode` `C++`