Try   HackMD

【LeetCode】 973. K Closest Points to Origin

Description

We have a list of points on the plane. Find the K closest points to the origin (0, 0).
(Here, the distance between two points on a plane is the Euclidean distance.)
You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in.)

Note:

  • 1 <= K <= points.length <= 10000
  • -10000 < points[i][0] < 10000
  • -10000 < points[i][1] < 10000

在平面上我們擁有一個列表的點。找到前K個最靠近原點(0, 0)的點。
(在這裡,兩點的距離定義為歐氏距離。)
你用任何順序可以回傳答案。答案保證是唯一的(除了不同排序)。

提示:

  • 1 <= K <= points.length <= 10000
  • -10000 < points[i][0] < 10000
  • -10000 < points[i][1] < 10000

Example:

Example 1:

Input: points = [[1,3],[-2,2]], K = 1
Output: [[-2,2]]
Explanation: 
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]].


Example 2:

Input: points = [[3,3],[5,-1],[-2,4]], K = 2
Output: [[3,3],[-2,4]]
(The answer [[-2,4],[3,3]] would also be accepted.)

Solution

  • 將所有點排序,比較function自己重寫,定義為與原點的距離。
  • 原點的距離是
    x2+y2
    ,但為了節省計算時間可以不用開根號。
  • 排序完畢之後,使用resize()拿出前K項。

Code

bool myCompare (vector<int> p1,vector<int> p2) { return (p1[0] * p1[0] + p1[1] * p1[1] < p2[0] * p2[0] + p2[1] * p2[1]); } class Solution { public: vector<vector<int>> kClosest(vector<vector<int>>& points, int K) { sort(points.begin(), points.end(), myCompare); points.resize(K); return points; } };
tags: LeetCode C++