Try   HackMD

【LeetCode】 518. Coin Change 2

Description

You are given coins of different denominations and a total amount of money. Write a function to compute the number of combinations that make up that amount. You may assume that you have infinite number of each kind of coin.

Note:
You can assume that

  • 0 <= amount <= 5000
  • 1 <= coin <= 5000
  • the number of coins is less than 500
  • the answer is guaranteed to fit into signed 32-bit integer

給予你不同面額的金幣和一個金額的總數。寫一個函式去計算有幾種組合可以湊成該金額。你可以假設每種面額的金幣都有無限枚。

提示:
你可以假設

  • 0 <= amount <= 5000
  • 1 <= coin <= 5000
  • 金幣的種類數少於 500
  • 答案保證可以用 32 位元的有號正整數去表示

Example:

Example 1:

Input: amount = 5, coins = [1, 2, 5]
Output: 4
Explanation: there are four ways to make up the amount:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1


Example 2:

Input: amount = 3, coins = [2]
Output: 0
Explanation: the amount of 3 cannot be made up just with coins of 2.


Example 3:

Input: amount = 10, coins = [10] 
Output: 1

Solution

  • 一開始想到的是貪婪法,概念是一直拿硬幣,如果剛好拿滿就讓答案加一;拿超過就換下一種硬幣。
class Solution { public: void greedy(int amount, vector<int> coins, int& ans) { if(amount == 0) ans++; if(coins.empty()) return; else if(amount > 0) { greedy(amount - coins.front(), coins, ans); coins.erase(coins.begin()); greedy(amount, coins, ans); } } int change(int amount, vector<int>& coins) { int ans = 0; greedy(amount, coins, ans); return ans; } };
  • 結果吃了TLE,當金錢總數越大時這個演算法會跑超級久(基本上每一種組合都拿過一次,太過耗時)。

  • 接著想到使用DP來加速。
  • 總共產生0 ~ amountamount + 1個格子,其代表金額為i的時候有的組合數。
    • 因此答案就是DP[amount]
  • 初始設定DP[0] = 1。(每種硬幣都不拿、一種組合)。
  • 接著跑每一種硬幣,去更新 DP 即可。

Code

class Solution { public: int change(int amount, vector<int>& coins) { vector<int> dp(amount + 1, 0); dp[0] = 1; for (int coin : coins) { for (int i = coin; i <= amount; i++) { dp[i] += dp[i - coin]; } } return dp[amount]; } };
tags: LeetCode C++