# 【LeetCode】 518. Coin Change 2 ## Description > You are given coins of different denominations and a total amount of money. Write a function to compute the number of combinations that make up that amount. You may assume that you have infinite number of each kind of coin. > Note: > You can assume that > * 0 <= amount <= 5000 > * 1 <= coin <= 5000 > * the number of coins is less than 500 > * the answer is guaranteed to fit into signed 32-bit integer > 給予你不同面額的金幣和一個金額的總數。寫一個函式去計算有幾種組合可以湊成該金額。你可以假設每種面額的金幣都有無限枚。 > 提示: > 你可以假設 > * 0 <= amount <= 5000 > * 1 <= coin <= 5000 > * 金幣的種類數少於 500 > * 答案保證可以用 32 位元的有號正整數去表示 ## Example: ``` Example 1: Input: amount = 5, coins = [1, 2, 5] Output: 4 Explanation: there are four ways to make up the amount: 5=5 5=2+2+1 5=2+1+1+1 5=1+1+1+1+1 Example 2: Input: amount = 3, coins = [2] Output: 0 Explanation: the amount of 3 cannot be made up just with coins of 2. Example 3: Input: amount = 10, coins = [10] Output: 1 ``` ## Solution * 一開始想到的是貪婪法,概念是一直拿硬幣,如果剛好拿滿就讓答案加一;拿超過就換下一種硬幣。 ```C++=1 class Solution { public: void greedy(int amount, vector<int> coins, int& ans) { if(amount == 0) ans++; if(coins.empty()) return; else if(amount > 0) { greedy(amount - coins.front(), coins, ans); coins.erase(coins.begin()); greedy(amount, coins, ans); } } int change(int amount, vector<int>& coins) { int ans = 0; greedy(amount, coins, ans); return ans; } }; ``` * 結果吃了TLE,當金錢總數越大時這個演算法會跑超級久(基本上每一種組合都拿過一次,太過耗時)。 --- * 接著想到使用DP來加速。 * 總共產生`0 ~ amount`共`amount + 1`個格子,其代表金額為`i`的時候有的組合數。 * 因此答案就是`DP[amount]`。 * 初始設定`DP[0] = 1`。(每種硬幣都不拿、一種組合)。 * 接著跑每一種硬幣,去更新 DP 即可。 ### Code ```C++=1 class Solution { public: int change(int amount, vector<int>& coins) { vector<int> dp(amount + 1, 0); dp[0] = 1; for (int coin : coins) { for (int i = coin; i <= amount; i++) { dp[i] += dp[i - coin]; } } return dp[amount]; } }; ``` ###### tags: `LeetCode` `C++`