You are given coins of different denominations and a total amount of money. Write a function to compute the number of combinations that make up that amount. You may assume that you have infinite number of each kind of coin.
Note:
You can assume that
- 0 <= amount <= 5000
- 1 <= coin <= 5000
- the number of coins is less than 500
- the answer is guaranteed to fit into signed 32-bit integer
給予你不同面額的金幣和一個金額的總數。寫一個函式去計算有幾種組合可以湊成該金額。你可以假設每種面額的金幣都有無限枚。
提示:
你可以假設
- 0 <= amount <= 5000
- 1 <= coin <= 5000
- 金幣的種類數少於 500
- 答案保證可以用 32 位元的有號正整數去表示
Example 1:
Input: amount = 5, coins = [1, 2, 5]
Output: 4
Explanation: there are four ways to make up the amount:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
Example 2:
Input: amount = 3, coins = [2]
Output: 0
Explanation: the amount of 3 cannot be made up just with coins of 2.
Example 3:
Input: amount = 10, coins = [10]
Output: 1
class Solution {
public:
void greedy(int amount, vector<int> coins, int& ans)
{
if(amount == 0) ans++;
if(coins.empty()) return;
else if(amount > 0)
{
greedy(amount - coins.front(), coins, ans);
coins.erase(coins.begin());
greedy(amount, coins, ans);
}
}
int change(int amount, vector<int>& coins) {
int ans = 0;
greedy(amount, coins, ans);
return ans;
}
};
0 ~ amount
共amount + 1
個格子,其代表金額為i
的時候有的組合數。
DP[amount]
。DP[0] = 1
。(每種硬幣都不拿、一種組合)。
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<int> dp(amount + 1, 0);
dp[0] = 1;
for (int coin : coins) {
for (int i = coin; i <= amount; i++) {
dp[i] += dp[i - coin];
}
}
return dp[amount];
}
};
LeetCode
C++