# 【LeetCode】 108. Convert Sorted Array to Binary Search Tree
## Description
> Given an array where elements are sorted in ascending order, convert it to a height balanced BST.
> For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
> 給一個經過漸增排序後的陣列,將它轉換為高度平衡的二元搜索樹(BST)。
> 對於這個問題,一個高度平衡的二元樹被定義為所有節點的兩個子樹,高度相差都不大於1的二元樹。
## Example:
```
Given the sorted array: [-10,-3,0,5,9],
One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:
0
/ \
-3 9
/ /
-10 5
```
## Solution
* 要建立一個平衡的BST並不難,我們只要確定每次建立節點時都挑選中間的元素,就可以讓樹不會往某一邊歪斜。
* 我的作法是將陣列的中間值設為該節點的值,然後用剩下陣列的左半邊建立左子樹,右半邊建立右子樹。
### Code
```C++=1
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
void BST(vector<int>& nums, int s, int e, TreeNode*& n)
{
if(s > e) return;
int mid = (s + e) / 2;
n = new TreeNode(nums[mid]);
BST(nums, s, mid - 1, n->left);
BST(nums, mid + 1, e, n->right);
}
TreeNode* sortedArrayToBST(vector<int>& nums) {
TreeNode* root = NULL;
BST(nums, 0, nums.size() - 1, root);
return root;
}
};
```
###### tags: `LeetCode` `C++`