處理時間:2022/03/10
forked from xialeiliu/Awesome-Incremental-Learning
重要 [R-CNN] Rich feature hierarchies for accurate object detection and semantic segmentation | [CVPR' 14] |[pdf]
[official code - caffe]
重要 [OverFeat] OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks | [ICLR' 14] |[pdf]
[official code - torch]
重要 [SPPnet] Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition | |[pdf]
重要-影像分類 [ResNet] Deep Residual Learning for Image Recognition [pdf]
重要-影像分類 [VGG] Very Deep Convolutional Networks for Large-Scale Image Recognition [pdf]
重要 [Fast R-CNN] Fast R-CNN | [ICCV' 15] |[pdf]
[official code - caffe]
重要 [Faster R-CNN, RPN] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks | [NIPS' 15] |[pdf]
[official code - caffe]
[unofficial code - tensorflow]
[unofficial code - pytorch]
重要 [YOLO v1] You Only Look Once: Unified, Real-Time Object Detection | [CVPR' 16] |[pdf]
[official code - c]
重要 [OHEM] Training Region-based Object Detectors with Online Hard Example Mining | [CVPR' 16] |[pdf]
[official code - caffe]
重要 [SSD] SSD: Single Shot MultiBox Detector | [ECCV' 16] |[pdf]
[official code - caffe]
[unofficial code - tensorflow]
[unofficial code - pytorch]
重要 [R-FCN] R-FCN: Object Detection via Region-based Fully Convolutional Networks | [NIPS' 16] |[pdf]
[official code - caffe]
[unofficial code - caffe]
重要 [FPN] Feature Pyramid Networks for Object Detection | [CVPR' 17] |[pdf]
[unofficial code - caffe]
重要 [YOLO v2] YOLO9000: Better, Faster, Stronger | [CVPR' 17] |[pdf]
[official code - c]
[unofficial code - caffe]
[unofficial code - tensorflow]
[unofficial code - tensorflow]
[unofficial code - pytorch]
重要 [RetinaNet] Focal Loss for Dense Object Detection | [ICCV' 17] |[pdf]
[official code - keras]
[unofficial code - pytorch]
[unofficial code - mxnet]
[unofficial code - tensorflow]
[SMN] Spatial Memory for Context Reasoning in Object Detection | [ICCV' 17] |[pdf]
、引用次數133
[Light-Head R-CNN] Light-Head R-CNN: In Defense of Two-Stage Object Detector | [arXiv' 17] |[pdf]
[official code - tensorflow]
、引用次數261
重要 [Soft-NMS] Improving Object Detection With One Line of Code | [ICCV' 17] |[pdf]
[official code - caffe]
、引用次數1055
重要-SSD家族 [DSSD] DSSD : Deconvolutional Single Shot Detector | [pdf]
、引用次數1570
重要-SSD家族 [FSSD] FSSD: Feature Fusion Single Shot Multibox Detector | [pdf]
、引用次數308
重要 [YOLO v3] YOLOv3: An Incremental Improvement | [arXiv' 18] |[pdf]
[official code - c]
[unofficial code - pytorch]
[unofficial code - pytorch]
[unofficial code - keras]
[unofficial code - tensorflow]
重要 [RefineDet-SSD家族] Single-Shot Refinement Neural Network for Object Detection | [CVPR' 18] |[pdf]
[official code - caffe]
[unofficial code - chainer]
[unofficial code - pytorch]
、引用次數1055
重要 [Cascade R-CNN] Cascade R-CNN: Delving into High Quality Object Detection | [CVPR' 18] |[pdf]
[official code - caffe]
、引用次數2129
重要 [CornerNet] CornerNet: Detecting Objects as Paired Keypoints | [ECCV' 18] |[pdf]
[official code - pytorch]
、引用次數1806
[Softer-NMS] Softer-NMS: Rethinking Bounding Box Regression for Accurate Object Detection | [arXiv' 18] |[pdf]
、引用次數259
重要 [M2Det] M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network | [AAAI' 19] |[pdf]
[official code - pytorch]
、引用次數436
重要 [GIoU] Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression | [CVPR' 19] |[pdf]
、引用次數1233
重要 [Libra R-CNN] Libra R-CNN: Towards Balanced Learning for Object Detection | [CVPR' 19] |[pdf]
、引用次數613
重要 [NAS-FPN] NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection | [CVPR' 19] |[pdf]
、引用次數697
[Adaptive NMS] Adaptive NMS: Refining Pedestrian Detection in a Crowd | [CVPR' 19] |[pdf]
、引用次數152
Diversify and Match: A Domain Adaptive Representation Learning Paradigm for Object Detection | [CVPR' 19] |[pdf]
、引用次數138
Multi-adversarial Faster-RCNN for Unrestricted Object Detection | [ICCV' 19] |[pdf]
、引用次數127
A Robust Learning Approach to Domain Adaptive Object Detection | [ICCV' 19] |[pdf]
、引用次數103
Selectivity or Invariance: Boundary-Aware Salient Object Detection | [ICCV' 19] |[pdf]
、引用次數104
重要 [TridentNet] Scale-Aware Trident Networks for Object Detection | [ICCV' 19] |[pdf]
、引用次數504
重要 [CenterNet] CenterNet: Keypoint Triplets for Object Detection | [ICCV' 19] |[pdf]
、引用次數962
[Auto-FPN] Auto-FPN: Automatic Network Architecture Adaptation for Object Detection Beyond Classification | [ICCV' 19] |[pdf]
、引用次數104
[ThunderNet] ThunderNet: Towards Real-Time Generic Object Detection on Mobile Devices | [ICCV' 19] |[pdf]
、引用次數142
[RDN] Relation Distillation Networks for Video Object Detection | [ICCV' 19] |[pdf]
、引用次數99
[SCAN] Stacked Cross Refinement Network for Edge-Aware Salient Object Detection | [ICCV' 19] |[official code]
|[pdf]
、引用次數164
[ClusDet] Clustered Object Detection in Aerial Images | [ICCV' 19] |[pdf]
、引用次數100
Few-Shot Object Detection via Feature Reweighting | [ICCV' 19] |[pdf]
、引用次數281
[Objects365] Objects365: A Large-Scale, High-Quality Dataset for Object Detection | [ICCV' 19] |[pdf]
、引用次數104
重要 [EGNet] EGNet: Edge Guidance Network for Salient Object Detection | [ICCV' 19] |[pdf]
、引用次數400
重要[FCOS] FCOS: Fully Convolutional One-Stage Object Detection | [ICCV' 19] |[pdf]
、引用次數1694
[RepPoints] RepPoints: Point Set Representation for Object Detection | [ICCV' 19] |[pdf]
、引用次數318
Meta-Learning to Detect Rare Objects | [ICCV' 19] |[pdf]
、引用次數117
[Gaussian YOLOv3] Gaussian YOLOv3: An Accurate and Fast Object Detector using Localization Uncertainty for Autonomous Driving | [ICCV' 19] |[pdf]
[official code - c]
、引用次數204
[FreeAnchor] FreeAnchor: Learning to Match Anchors for Visual Object Detection | [NeurIPS' 19] |[pdf]
、引用次數169
[DetNAS] DetNAS: Backbone Search for Object Detection | [NeurIPS' 19] |[pdf]
、引用次數137
[AA] Learning Data Augmentation Strategies for Object Detection | [arXiv' 19] |[pdf]
、引用次數241
[Spinenet] Spinenet: Learning scale-permuted backbone for recognition and localization | [arXiv' 19] |[pdf]
、引用次數111
重要 Object Detection in 20 Years: A Survey | [arXiv' 19] |[pdf]
、引用次數508
Salient Object Detection in the Deep Learning Era: An In-Depth Survey | [CVPR 19] |[pdf]
、引用次數288
重要 [CSPNet] CSPNet: A New Backbone that can Enhance Learning Capability of CNN [pdf]
、引用次數736
[CBnet] Cbnet: A novel composite backbone network architecture for object detection | [AAAI' 20] |[pdf]
、引用次數144
重要 [Distance-IoU Loss] Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression | [AAAI' 20] |[pdf]
、引用次數594
重要 [YOLOv4] YOLOv4: Optimal Speed and Accuracy of Object Detection | [arXiv' 20] |[pdf]
、引用次數3206
重要 [Scaled-YOLOv4] Scaled-YOLOv4: Scaling Cross Stage Partial Network、[pdf]
、引用次數212
[PP YOLO] PP-YOLO: An Effective and Efficient Implementation of Object Detector |[pdf]
、引用次數57
Few-Shot Object Detection With Attention-RPN and Multi-Relation Detector | [CVPR' 20] |[pdf]
、引用次數188
重要 Bridging the Gap Between Anchor-Based and Anchor-Free Detection via Adaptive Training Sample Selection | [CVPR' 20] |[pdf]
、引用次數369
Rethinking Classification and Localization for Object Detection | [CVPR' 20] |[pdf]
、引用次數133
重要 [EfficientDet] EfficientDet: Scalable and Efficient Object Detection | [CVPR' 20] |[pdf]
、引用次數1498
Dynamic Refinement Network for Oriented and Densely Packed Object Detection | [CVPR' 20] |[pdf]
、引用次數76
[D2Det] D2Det: Towards High Quality Object Detection and Instance Segmentation | [CVPR' 20] |[pdf]
、引用次數71
Prime Sample Attention in Object Detection | [CVPR' 20] |[pdf]
、引用次數88
Exploring Categorical Regularization for Domain Adaptive Object Detection | [CVPR' 20] |[pdf]
、引用次數79
[NAS-FCOS] NAS-FCOS: Fast Neural Architecture Search for Object Detection | [CVPR' 20] |[pdf]
、引用次數79
[AugFPN] AugFPN: Improving Multi-Scale Feature Learning for Object Detection | [CVPR' 20] |[pdf]
、引用次數113
Incremental Few-Shot Object Detection | [CVPR' 20] |[pdf]
、引用次數90
DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution | [arXiv' 20] |[pdf]
、引用次數198
重要 [DETR] End-to-End Object Detection with Transformers | [ECCV' 20] |[pdf]
、引用次數1644
Suppress and Balance: A Simple Gated Network for Salient Object Detection | [ECCV' 20] |[code]
、引用次數111
[Chained-Tracker] Chained-Tracker: Chaining Paired Attentive Regression Results for End-to-End Joint Multiple-Object Detection and Tracking | [ECCV' 20] |[pdf]
-引用次數81
Highly Efficient Salient Object Detection with 100K Parameters | [ECCV' 20] |[pdf]
-引用次數63
Arbitrary-Oriented Object Detection with Circular Smooth Label | [ECCV' 20] |[pdf]
-引用次數87
Soft Anchor-Point Object Detection | [ECCV' 20] |[pdf]
-引用次數69
[Dynamic R-CNN] Dynamic R-CNN: Towards High Quality Object Detection via Dynamic Training | [ECCV' 20] |[pdf]
-引用次數91
Multi-Scale Positive Sample Refinement for Few-Shot Object Detection | [ECCV' 20] |[pdf]
、引用次數53
Few-Shot Object Detection and Viewpoint Estimation for Objects in the Wild | [ECCV' 20] |[pdf]
、引用次數60
Pillar-based Object Detection for Autonomous Driving | [ECCV' 20] |[pdf]
、引用次數52
Probabilistic Anchor Assignment with IoU Prediction for Object Detection | [ECCV' 20] |[pdf]
、引用次數76
On the Importance of Data Augmentation for Object Detection | [ECCV' 20] |[pdf]
、引用次數53
[Generalized Focal Loss V2] Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection [pdf]
、引用次數35
[Sparse R-CNN] Sparse R-CNN: End-to-End Object Detection with Learnable Proposals [pdf]
、引用次數107
[Center-based 3D] Center-based 3D Object Detection and Tracking [pdf]
、引用次數141
[YOLOR] You Only Learn One Representation: Unified Network for Multiple Tasks [pdf]
、引用次數32
補充
https://github.com/xingkongliang/Pedestrian-Detection